ϟ

Georgios Bakas

Here are all the papers by Georgios Bakas that you can download and read on OA.mg.
Georgios Bakas’s last known institution is . Download Georgios Bakas PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/16/04/t04002
2021
Cited 14 times
Construction and commissioning of CMS CE prototype silicon modules
Abstract As part of its HL-LHC upgrade program, the CMS collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with ∼30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1 cm 2 , and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration.
DOI: 10.1088/1748-0221/18/08/p08014
2023
Cited 3 times
Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20–300 GeV/c
Abstract The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly read out by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.
DOI: 10.1088/1748-0221/17/05/p05022
2022
Cited 7 times
Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20–300 GeV positrons
Abstract The Compact Muon Solenoid collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1.1 cm 2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation.
DOI: 10.3390/pr10102147
2022
Cited 5 times
Object Detection: Custom Trained Models for Quality Monitoring of Fused Filament Fabrication Process
Process reliability and quality output are critical indicators for the upscaling potential of a fabrication process on an industrial level. Fused filament fabrication (FFF) is a versatile additive manufacturing (AM) technology that provides viable and cost-effective solutions for prototyping applications and low-volume manufacturing of high-performance functional parts, yet is defect-prone due to the inherent aspect of parametrization. A systematic yet parametric workflow for quality inspection is therefore required. The work presented describes a versatile and reliable framework for automatic defect detection during the FFF process, enabled by artificial intelligence-based computer vision. Specifically, state-of-the-art deep learning models are developed for in-line inspection of individual thermoplastic strands’ surface morphology and weld quality, thus defining acceptable limits for FFF process parameter values. We examine the capabilities of an NVIDIA Jetson Nano, a low-power, high-performance computer with an integrated graphical processing unit (GPU). The developed deep learning models used in this analysis use a pre-trained model combined with manual configurations in order to efficiently identify the thermoplastic strands’ surface morphology. The proposed methodology aims to facilitate process parameter selection and the early identification of critical defects, toward an overall improvement in process reliability with reduced operator intervention.
DOI: 10.1088/1748-0221/16/04/t04001
2021
Cited 8 times
The DAQ system of the 12,000 channel CMS high granularity calorimeter prototype
Abstract The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC) [1]. Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates [2]. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ≈12,000 channels of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry Pi computers.
DOI: 10.1093/oxfordjournals.rpd.a083115
1984
Cited 13 times
A New Optical Multichannel Analyser Using a Charge Coupled Device as Detector for Thermoluminescence Emission Measurements
DOI: 10.3390/met12111816
2022
A Tool for Rapid Analysis Using Image Processing and Artificial Intelligence: Automated Interoperable Characterization Data of Metal Powder for Additive Manufacturing with SEM Case
A methodology for the automated analysis of metal powder scanning electron microscope (SEM) images towards material characterization is developed and presented. This software-based tool takes advantage of a combination of recent artificial intelligence advances (mask R-CNN), conventional image processing techniques, and SEM characterization domain knowledge to assess metal powder quality for additive manufacturing applications. SEM is being used for characterizing metal powder alloys, specifically by quantifying the diameter and number of spherical particles, which are key characteristics for assessing the quality of the analyzed powder. Usually, SEM images are manually analyzed using third-party analysis software, which can be time-consuming and often introduces user bias into the measurements. In addition, only a few non-statistically significant samples are taken into consideration for the material characterization. Thus, a method that can overcome the above challenges utilizing state-of-the-art instance segmentation models is introduced. The final proposed model achieved a total mask average precision (mAP50) 67.2 at an intersection over union of 0.5 and with prediction confidence threshold of 0.4. Finally, the predicted instance masks are further used to provide a statistical analysis that includes important metrics such as the particle size distinction.
DOI: 10.1088/1748-0221/18/08/p08024
2023
Neutron irradiation and electrical characterisation of the first 8” silicon pad sensor prototypes for the CMS calorimeter endcap upgrade
As part of its HL-LHC upgrade program, the CMS collaboration is replacing its existing endcap calorimeters with a high-granularity calorimeter (CE). The new calorimeter is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic and hadronic compartments. Due to its compactness, intrinsic time resolution, and radiation hardness, silicon has been chosen as active material for the regions exposed to higher radiation levels. The silicon sensors are fabricated as 20 cm (8") wide hexagonal wafers and are segmented into several hundred pads which are read out individually. As part of the sensor qualification strategy, 8" sensor irradiation with neutrons has been conducted at the Rhode Island Nuclear Science Center (RINSC) and followed by their electrical characterisation in 2020-21. The completion of this important milestone in the CE's R&D program is documented in this paper and it provides detailed account of the associated infrastructure and procedures. The results on the electrical properties of the irradiated CE silicon sensors are presented.
DOI: 10.5281/zenodo.6913665
2022
ImPure Injection Molding Sensor Data - Trial 16th May
ImPure project, open access data from PASCOE IM line.
DOI: 10.5281/zenodo.6913660
2022
ImPure Injection Molding Sensor Data - Trial 17th May
ImPure project, open access data from PASCOE IM line.
DOI: 10.5281/zenodo.6913686
2022
ImPure Injection Molding Sensor Data - Trial 12th May
ImPure project, open access data from PASCOE IM line.
DOI: 10.5281/zenodo.6913659
2022
ImPure Injection Molding Sensor Data - Trial 17th May
ImPure project, open access data from PASCOE IM line.
DOI: 10.5281/zenodo.6913687
2022
ImPure Injection Molding Sensor Data - Trial 12th May
ImPure project, open access data from PASCOE IM line.
DOI: 10.5281/zenodo.6913666
2022
ImPure Injection Molding Sensor Data - Trial 16th May
ImPure project, open access data from PASCOE IM line.
DOI: 10.48550/arxiv.2012.06336
2020
Construction and commissioning of CMS CE prototype silicon modules
As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with $\sim$30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1~$cm^2$, and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration.
DOI: 10.22323/1.390.0317
2021
Top quark pair and single top differential cross sections in CMS
Differential measurements of top quark pair and single top quark production cross sections are presented using data collected by the CMS detector.The cross sections are measured as a function of various kinematic observables of the top quarks and the jets and leptons of the event final state.The results are confronted with precise theory NLO+PS calculations.