ϟ

F. Würthwein

Here are all the papers by F. Würthwein that you can download and read on OA.mg.
F. Würthwein’s last known institution is . Download F. Würthwein PDFs here.

Claim this Profile →
DOI: 10.1088/1742-6596/78/1/012057
2007
Cited 519 times
The open science grid
The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support it's use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.
DOI: 10.1109/csie.2009.950
2009
Cited 242 times
The Pilot Way to Grid Resources Using glideinWMS
Grid computing has become very popular in big and widespread scientific communities with high computing demands, like high energy physics. Computing resources are being distributed over many independent sites with only a thin layer of grid middleware shared between them. This deployment model has proven to be very convenient for computing resource providers, but has introduced several problems for the users of the system, the three major being the complexity of job scheduling, the non-uniformity of compute resources, and the lack of good job monitoring. Pilot jobs address all the above problems by creating a virtual private computing pool on top of grid resources. This paper presents both the general pilot concept, as well as a concrete implementation, called glideinWMS, deployed in the Open Science Grid.
DOI: 10.1103/physrevlett.84.5283
2000
Cited 133 times
Study of Exclusive Radiative<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Meson Decays
We have studied exclusive, radiative B meson decays to charmless mesons in 9.7x10(6) B&Bmacr; decays accumulated with the CLEO detector. We measure B(B0-->K(*0)(892)gamma) = (4.55(+0.72)(-0. 68)+/-0.34)x10(-5) and B(B+-->K(*+)(892)gamma) = (3.76(+0.89)(-0. 83)+/-0.28)x10(-5). We have searched for CP asymmetry in B-->K(*)(892)gamma decays and measure A(CP) = +0.08+/-0.13+/-0.03. We report the first observation of B-->K(*)(2)(1430)gamma decays with a branching fraction of (1.66(+0.59)(-0.53)+/-0.13)x10(-5). No evidence for the decays B-->rhogamma and B0-->omegagamma is found and we limit B(B-->(rho/omega)gamma)/B(B-->K(*)(892)gamma)<0.32 at 90% C.L.
DOI: 10.1103/physrevd.61.112002
2000
Cited 129 times
Hadronic structure in the decay<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mi>−</mml:mi></mml:mrow></mml:msup></mml:mrow><mml:mo>→</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mi>−</mml:mi></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:…
We report on a study of the invariant mass spectrum of the hadronic system in the decay τ−→π−π0ντ. This study was performed with data obtained with the CLEO II detector operating at the CESR e+e− collider. We present fits to phenomenological models in which resonance parameters associated with the ρ(770) and ρ(1450) mesons are determined. The π−π0 spectral function inferred from the invariant mass spectrum is compared with data on e+e−→π+π− as a test of the conserved vector current theorem. We also discuss the implications of our data with regard to estimates of the hadronic contribution to the muon anomalous magnetic moment.Received 21 October 1999DOI:https://doi.org/10.1103/PhysRevD.61.112002©2000 American Physical Society
DOI: 10.1103/physrevlett.86.4479
2001
Cited 103 times
Observation of New States Decaying into<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi mathvariant="italic">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">c</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">π</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi …
Using 13.7 fb^{-1} of data recorded by the CLEO detector at CESR, we investigate the spectrum of charmed baryons which decay into Lambda_c^+ pi^- pi^+ and are more massive than the Lambda_{c1} baryons. We find evidence for two new states: one is broad and has an invariant mass roughly 480 MeV above that of the Lambda_c^+; the other is narrow with an invariant mass of 596 +- 1 +- 2 MeV above the Lambda_c^+ mass. These results are preliminary.
DOI: 10.1103/physrevd.51.1014
1995
Cited 97 times
Measurement of the<i>B</i>¯→<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">*</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><i>l</i>ν¯ branching fractions and ‖<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="italic">V</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="…
We study the exclusive semileptonic B meson decays ${\mathit{B}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}0}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{} and B${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}^{0}$\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}+}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{} using data collected with the CLEO II detector at the Cornell Electron-positron Storage Ring (CESR). We present measurements of the branching fractions scrB(B${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}^{0}$\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}+}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{})= (0.5/${\mathit{f}}_{00}$)[4.49\ifmmode\pm\else\textpm\fi{}0.32(stat.)\ifmmode\pm\else\textpm\fi{}0.39 (syst.)]% and scrB(${\mathit{B}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}0}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$(\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{})= (0.5/${\mathit{f}}_{+\mathrm{\ensuremath{-}}}$)[5.13\ifmmode\pm\else\textpm\fi{}0.54 (stat) \ifmmode\pm\else\textpm\fi{}0.64 (syst)]%, where ${\mathit{f}}_{00}$ and ${\mathit{f}}_{+\mathrm{\ensuremath{-}}}$ are the neutral and charged B meson production fractions at the \ensuremath{\Upsilon}(4S) resonance, respectively. Assuming isospin invariance and taking the ratio of charged to neutral B meson lifetimes measured at higher energy machines, we determine the ratio ${\mathit{f}}_{+\mathrm{\ensuremath{-}}}$/${\mathit{f}}_{00}$=1.04\ifmmode\pm\else\textpm\fi{}0.13 (stat) \ifmmode\pm\else\textpm\fi{}0.12 (syst) \ifmmode\pm\else\textpm\fi{}0.10 (lifetime); further assuming ${\mathit{f}}_{+\mathrm{\ensuremath{-}}}$+${\mathit{f}}_{00}$=1 we also determine the partial width \ensuremath{\Gamma}(B\ifmmode\bar\else\textasciimacron\fi{}\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}}$l\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{})=[29.9\ifmmode\pm\else\textpm\fi{}1.9 (stat) \ifmmode\pm\else\textpm\fi{}2.7 (syst.) \ifmmode\pm\else\textpm\fi{}2.0 (lifetime)] ${\mathrm{ns}}^{\mathrm{\ensuremath{-}}1}$ (independent of ${\mathit{f}}_{+\mathrm{\ensuremath{-}}}$/${\mathit{f}}_{00}$).From this partial width we calculate B\ifmmode\bar\else\textasciimacron\fi{}\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}}$l\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{} branching fractions that do not depend on ${\mathit{f}}_{+\mathrm{\ensuremath{-}}}$/${\mathit{f}}_{00}$ or the individual B lifetimes, but only on the charged to neutral B lifetime ratio. The product of the CKM matrix element \ensuremath{\Vert}${\mathit{V}}_{\mathit{c}\mathit{b}}$\ensuremath{\Vert} times the normalization of the decay form factor at the point of no recoil of the ${\mathit{D}}^{\mathrm{*}}$ meson, scrF(y=1), is determined from a linear fit to the combined differential decay rate of the exclusive B\ifmmode\bar\else\textasciimacron\fi{}\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}}$l\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{} decays: \ensuremath{\Vert}${\mathit{V}}_{\mathit{c}\mathit{b}}$\ensuremath{\Vert}scrF(1)=0.0351\ifmmode\pm\else\textpm\fi{}0.0019 (stat) \ifmmode\pm\else\textpm\fi{}0.0018 (syst) \ifmmode\pm\else\textpm\fi{}0.0008 (lifetime). The value for \ensuremath{\Vert}${\mathit{V}}_{\mathit{c}\mathit{b}}$\ensuremath{\Vert} is extracted using theoretical calculations of the form factor normalization.
DOI: 10.1103/physrevlett.84.5038
2000
Cited 94 times
Search for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi>−</mml:mi><mml:mrow><mml:msup><mml:mover><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mi>¯</mml:mi></mml:mrow></mml:mover><mml:mrow><mml:mi /><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>Mixing
We have studied the "wrong-sign" process D0-->K+pi(-) to search for D0-&Dmacr;( 0) mixing. The data come from 9.0 fb(-1) of e(+)e(-) collisions at sqrt[s] approximately 10 GeV recorded with the CLEO II. V detector. We measure the relative rate of the wrong-sign process D0-->K+pi(-) to the Cabibbo-favored process &Dmacr;( 0)-->K+pi(-) to be R = (0.332(+0.063)(-0.065)+/-0.040)%. We study D0-->K+pi(-) as a function of decay time to distinguish direct doubly Cabibbo-suppressed decay from D0-&Dmacr;( 0) mixing. The amplitudes that describe D0-&Dmacr;( 0) mixing, x(') and y('), are consistent with zero. At the 95% C.L. and without assumptions concerning charge-parity ( CP) violating parameters, we find (1/2)x('2)<0.041% and -5.8%<y(')<1.0%.
DOI: 10.1103/physrevlett.85.520
2000
Cited 93 times
Two-Body<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Meson Decays to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>η</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>η</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>: Observation of<mml:math xmlns:mml="http…
In a sample of 19 million produced B mesons, we have observed the decays B -> eta K* and improved our previous measurements of B -> eta'K. The branching fractions we measure for these decay modes are BR(B+ -> eta K*+) = (26.4 +9.6-8.2 +- 3.3) x $10^{-6}$, BR(B0 -> eta K*0) = (13.8 +5.5-4.6 +- 1.6) x $10^{-6}$, BR(B+ -> eta' K+) = (80 +10-9 +- 7) x $10^{-6}$ and BR(B0 -> eta' K0) = (89 +18-16 +- 9) x $10^{-6}$. We have searched with comparable sensitivity for related decays and report upper limits for these branching fractions.
DOI: 10.1103/physrevlett.71.4111
1993
Cited 91 times
Measurement of charmless semileptonic decays of<i>B</i>mesons
Using the CLEO II detector and a sample of 955 000 Υ(4S) decays we have confirmed charmless semileptonic decays of B mesons. In the momentum interval 2.3–2.6 GeV/c we observe an excess of 107±15±11 leptons, which we attribute to b→ulν. This result yields a model-dependent range of values for ‖Vub/Vcb‖ that is lower than has been obtained in previous studies. For the inclusive spectator model of Altarelli et al. we find ‖Vub/Vcb‖=0.076±0.008. Models that describe b→ulν with a limited set of exclusive final states give ‖Vub/Vcb‖=0.06-0.10.Received 7 September 1993DOI:https://doi.org/10.1103/PhysRevLett.71.4111©1993 American Physical Society
DOI: 10.1103/physrevlett.85.525
2000
Cited 87 times
Measurement of Charge Asymmetries in Charmless Hadronic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Meson Decays
We search for CP-violating charge asymmetries (alpha(CP)) in the B meson decays to K(+/-)pi(-/+), K(+/-)pi(0), K(0)(S)pi(+/-), K(+/-)eta('), and omega pi(+/-). Using 9.66 million upsilon(4S) decays collected with the CLEO detector, the statistical precision on alpha(CP) is in the range of +/-0.12 to +/-0.25 depending on decay mode. While CP-violating asymmetries of up to +/-0.5 are possible within the standard model, the measured asymmetries are consistent with zero in all five decay modes studied.
DOI: 10.1103/physrevlett.85.2881
2000
Cited 87 times
Study of Charmless Hadronic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Meson Decays to Pseudoscalar-Vector Final States
We report results of searches for charmless hadronic B meson decays to pseudoscalar( pi(+/-), K+/-, pi(0), or K(0)(S))-vector( rho, K(*), or omega) final states. By using 9.7x10(6) BB pairs collected with the CLEO detector, we report the first observation of B(-)--->pi(-)rho(0), B(0)-->pi(+/-)rho(-/+), and B(-)-->pi(-)omega, which are expected to be dominated by hadronic b-->u transitions. The measured branching fractions are (10.4(+3.3)(-3.4)+/-2.1)x10(-6), (27.6(+8.4)(-7.4)+/-4.2)x10(-6), and (11.3(+3.3)(-2.9)+/-1. 4)x10(-6), respectively. Branching fraction upper limits are set for all of the other decay modes investigated.
DOI: 10.1103/physrevlett.76.1570
1996
Cited 81 times
Measurement of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Semileptonic Branching Fraction with Lepton Tags
We have used the CLEO II detector and $2.06{\mathrm{fb}}^{\ensuremath{-}1}$ of $\ensuremath{\Upsilon}(4S)$ data to measure the $B$-meson semileptonic branching fraction. The $B\ensuremath{\rightarrow}\mathrm{Xe}\ensuremath{\nu}$ momentum spectrum was obtained over nearly the full momentum range by using charge and kinematic correlations in events with a high-momentum lepton tag and an additional electron. We find $B(B\ensuremath{\rightarrow}\mathrm{Xe}\ensuremath{\nu})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}(10.49\ifmmode\pm\else\textpm\fi{}0.17\ifmmode\pm\else\textpm\fi{}0.43)%$, with overall systematic uncertainties less than those of untagged single-lepton measurements. We use this result to calculate the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element ${V}_{\mathrm{cb}}$ and to set an upper limit on the fraction of $\ensuremath{\Upsilon}(4S)$ decays to final states other than $B\overline{B}$.
DOI: 10.1103/physrevlett.85.515
2000
Cited 81 times
Observation of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi><mml:mi /><mml:mo>→</mml:mo><mml:mi /><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">K</mml:mi></mml:mrow><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" …
We have studied charmless hadronic decays of $B$ mesons into two-body final states with kaons and pions and observe three new processes with the following branching fractions: $B(B\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}({4.3}_{\ensuremath{-}1.4}^{+1.6}\ifmmode\pm\else\textpm\fi{}0.5)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$, $B(B\ensuremath{\rightarrow}{K}^{0}{\ensuremath{\pi}}^{0})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}({14.6}_{\ensuremath{-}5.1\ensuremath{-}3.3}^{+5.9+2.4})\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$, and $B(B\ensuremath{\rightarrow}{K}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\pi}}^{0})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}({11.6}_{\ensuremath{-}2.7\ensuremath{-}1.3}^{+3.0+1.4})\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$. We also update our previous measurements for the decays $B\ensuremath{\rightarrow}{K}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\pi}}^{\ensuremath{\mp}}$ and ${B}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\rightarrow}{K}^{0}{\ensuremath{\pi}}^{\ifmmode\pm\else\textpm\fi{}}$.
DOI: 10.1103/physrevlett.76.3898
1996
Cited 78 times
Measurement of the Form Factors for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mover><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mi>¯</mml:mi></mml:mrow></mml:mover></mml:mrow></mml:mrow></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>→</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo><mml:mo>+</mml:mo…
Using a sample of $2.6\ifmmode\times\else\texttimes\fi{}{10}^{6}$ $\ensuremath{\Upsilon}(4\mathrm{S})\ensuremath{\rightarrow}B\overline{B}$ events collected with the CLEO II detector at the Cornell Electron Storage Ring, we have measured the form factors for ${\overline{B}}^{0}\ensuremath{\rightarrow}{D}^{*+}{\ensuremath{\ell}}^{\ensuremath{-}}\overline{\ensuremath{\nu}}$. We perform a three-parameter fit with the joint distribution of four kinematic variables to obtain the form-factor ratios ${R}_{1}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1.18\ifmmode\pm\else\textpm\fi{}0.30\ifmmode\pm\else\textpm\fi{}0.12$ and ${R}_{2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}0.71\ifmmode\pm\else\textpm\fi{}0.22\ifmmode\pm\else\textpm\fi{}0.07,$ and the form-factor slope ${\ensuremath{\rho}}_{{A}_{1}}^{2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}0.91\ifmmode\pm\else\textpm\fi{}0.15\ifmmode\pm\else\textpm\fi{}0.06,$ which is closely related to the slope of the Isgur-Wise function. The form-factor ratios are consistent with predicted corrections to the heavy-quark symmetry limit ${R}_{1}{\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}R}_{2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1$.
DOI: 10.1103/physrevlett.71.1680
1993
Cited 75 times
Two measurements of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">B</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><i>B</i><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">¯</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>mixing
We have measured the B0B¯0 mixing probability, χd, using a sample of 965 000 BB¯ pairs from Υ(4S) decays. Counting dilepton events, we find χd=0.157±0.016±0.018−0.021+0.028. Using tagged B0 events, we find χd=0.149±0.023±0.019±0.010. The first (second) error is statistical (systematic). The third error reflects a ±15% uncertainty in the assumption, made in both cases, that charged and neutral B pairs contribute equally to dilepton events. We also obtain a limit on the CP impurity in the Bd0 system, ‖Re(εB0)‖<0.045 at 90% C.L.Received 29 April 1993DOI:https://doi.org/10.1103/PhysRevLett.71.1680©1993 American Physical Society
DOI: 10.1016/0370-2693(95)00824-5
1995
Cited 69 times
Measurement of α from τ decays
We present measurements of spectral moments extracted from the invariant mass distributions of the final states of hadronic τ decay products recorded in the CLEO detector. From a fit of theoretical predictions to the measurements of spectral moments and the total hadronic decay width of the τ, we determine the strong coupling constant and a set of non-perturbative QCD parameters. The strong coupling constant is measured to be αs(mτ) = 0.306 ± 0.024, which when extrapolated to the Z mass, yields αs(Mz) = 0.114 ± 0.003.
DOI: 10.1103/physrevd.52.2661
1995
Cited 67 times
Inclusive decays of<i>B</i>mesons to charmonium
We have used the CLEO-II detector at the Cornell Electron Storage Ringe (CESR) to study the inclusive production of charmonium mesons in a sample of 2.15 million BB¯ events. We find inclusive branching fractions of (1.12±0.04±0.06)% for B→J/ψX, (0.34±0.04±0.03)% for B→ψ′X, and (0.40±0.06±0.04)% for B→χc1X. We also find some evidence for the inclusive production of χc2, and set an upper limit for the branching fraction of the inclusive decay B→ηcX of 0.9% at 90% confidence level. Momentum spectra for inclusive J/ψ, ψ′, and χc1 production are presented. These measurements are compared to theoretical calculations.Received 13 December 1994DOI:https://doi.org/10.1103/PhysRevD.52.2661©1995 American Physical Society
2001
Cited 64 times
$B$ physics at the Tevatron: Run II and beyond
This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.
DOI: 10.1103/physrevd.61.071101
2000
Cited 63 times
Update of the search for the neutrinoless decay<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mover><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mo>→</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:mrow><mml:mi>μ</mml:mi><mml:mi>γ</mml:mi></mml:math>
We present an update of the search for the lepton family number violating decay $\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\tau}}\ensuremath{\mu}\ensuremath{\gamma}$ using 12.6 million ${\ensuremath{\tau}}^{+}{\ensuremath{\tau}}^{\ensuremath{-}}$ pairs collected with the CLEO detector. No evidence of a signal has been found and the corresponding upper limit is $\mathcal{B}(\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\tau}}\ensuremath{\mu}\ensuremath{\gamma})&lt;1.1\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ at 90% C.L., significantly smaller than previous experimental limits.
DOI: 10.1103/physrevlett.80.3456
1998
Cited 62 times
Observation of Exclusive Two-Body<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Decays to Kaons and Pions
We have studied two-body charmless hadronic decays of B mesons into the final states $\pi\pi$, $K \pi$, and $KK$. Using 3.3 million $B\bar{B}$ pairs collected with the CLEO-II detector, we have made the first observation of the decays $B^0\to K^+\pi^-$, $B^+\to K^0\pi^+$, and the sum of $B^+ \to \pi^+\pi^0$ and $B^+ \to K^+\pi^0$ decays (an average over charge-conjugate states is always implied). We place upper limits on branching fractions for the remaining decay modes.
DOI: 10.1016/0370-2693(93)91385-z
1993
Cited 57 times
Measurements of exclusive semileptonic decays of D mesons
Using a sample of integrated luminosity 1.68 fb−1 collected with the CLEO-II detector at the Cornell Electron Storage Ring, we measure the branching ratios for the dominant exclusive semileptonic decays D → Klν and D → K∗lν, using charged and neutral D mesons. We also make a precise measurement of the vector form factor for the decay D0 → K−l+ν, using a sample of 2700 events.
DOI: 10.1088/1742-6596/396/4/042009
2012
Cited 36 times
Using Xrootd to Federate Regional Storage
While the LHC data movement systems have demonstrated the ability to move data at the necessary throughput, we have identified two weaknesses: the latency for physicists to access data and the complexity of the tools involved. To address these, both ATLAS and CMS have begun to federate regional storage systems using Xrootd. Xrootd, referring to a protocol and implementation, allows us to provide data access to all disk-resident data from a single virtual endpoint. This "redirector" discovers the actual location of the data and redirects the client to the appropriate site. The approach is particularly advantageous since typically the redirection requires much less than 500 milliseconds and the Xrootd client is conveniently built into LHC physicists' analysis tools. Currently, there are three regional storage federations - a US ATLAS region, a European CMS region, and a US CMS region. The US ATLAS and US CMS regions include their respective Tier 1, Tier 2 and some Tier 3 facilities; a large percentage of experimental data is available via the federation. Additionally, US ATLAS has begun studying low-latency regional federations of close-by sites. From the base idea of federating storage behind an endpoint, the implementations and use cases diverge. The CMS software framework is capable of efficiently processing data over high-latency links, so using the remote site directly is comparable to accessing local data. The ATLAS processing model allows a broad spectrum of user applications with varying degrees of performance with regard to latency; a particular focus has been optimizing n-tuple analysis. Both VOs use GSI security. ATLAS has developed a mapping of VOMS roles to specific file system authorizations, while CMS has developed callouts to the site's mapping service. Each federation presents a global namespace to users. For ATLAS, the global-to-local mapping is based on a heuristic-based lookup from the site's local file catalog, while CMS does the mapping based on translations given in a configuration file. We will also cover the latest usage statistics and interesting use cases that have developed over the previous 18 months.
DOI: 10.1145/3219104.3219108
2018
Cited 28 times
The Pacific Research Platform
While NSF's recent Campus Cyberinfrastructure investments have catalyzed an enormous leap in campus networking capabilities, it remains necessary to integrate these capabilities into the routine workflows of researchers transferring data among their remote collaborators, data repositories, and visualization facilities. The Pacific Research Platform (PRP) is a program to develop a science-driven, data-centric "freeway system" by federating campus Science DMZs into a regional Science DMZ. Research collaborations across PRP partners serve as use cases for deploying the hardware/software and addressing security/policy/social issues to achieve high-performance data transfers between researchers. The regional PRP represents a manageable scale for initial deployment efforts and capturing lessons learned, but the PRP also informs national deployments --i.e., an eventual National Research Platform (NRP). The recent First NRP Workshop included many campuses and networking organizations and addressed scientific requirements, scaling approaches, and socio-technical issues to extend the PRP to a national level; a second NRP Workshop will be held in August 2018. In this paper, we describe efforts to build the PRP, the social and technical approaches, the domain science applications of PRP's capabilities, and results of the recent NRP workshop.
DOI: 10.1103/physrevlett.80.1150
1998
Cited 58 times
Flavor-Specific Inclusive<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Decays to Charm
We have measured the branching fractions for B -> D_bar X, B -> D X, and B -> D_bar X \ell^+ \nu, where ``B'' is an average over B^0 and B^+, ``D'' is a sum over D^0 and D^+, and``D_bar'' is a sum over D^0_bar and D^-. From these results and some previously measured branching fractions, we obtain Br(b -> c c_bar s) = (21.9 $\pm$ 3.7)%, Br(b -> s g) < 6.8% @ 90% c.l, and Br(D^0 -> K^- \pi^+) = (3.69 $\pm$ 0.20)%. Implications for the ``B semileptonic decay problem'' (measured branching fraction being below theoretical expectations) are discussed. The increase in the value of Br(b -> c c_bar s) due to $B -> D X$ eliminates 40% of the discrepancy.
DOI: 10.1103/physrevlett.79.4533
1997
Cited 53 times
Measurement of the Decay Amplitudes and Branching Fractions of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi><mml:mspace /><mml:mo>→</mml:mo><mml:mspace /><mml:mi mathvariant="italic">J</mml:mi><mml:mi mathvariant="italic">/</mml:mi><mml:mi>ψ</mml:mi><mml:mi /><mml:mrow><mml:msup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>*</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org…
Using data taken with the CLEO II detector at the Cornell Electron Storage Ring, we present the first full angular analysis in the color-suppressed modes B0→J/ψK*0 and B+→J/ψK*+. This leads to a complete determination of the decay amplitudes of these modes including the longitudinal polarization γL/γ=0.52±0.07±0.04 and the P wave component |P|2=0.16±0.08±0.04. In addition, we update the branching fractions for B→J/ψK and B→J/ψK∗.Received 24 February 1997DOI:https://doi.org/10.1103/PhysRevLett.79.4533©1997 American Physical Society
DOI: 10.1103/physrevlett.77.810
1996
Cited 53 times
Observation of an Excited Charmed Baryon Decaying into<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>Ξ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">c</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>
Using data recorded by the CLEO II detector at the Cornell Electron Storage Ring, we report the first observation of an excited charmed baryon decaying into ${\ensuremath{\Xi}}_{c}^{0}{\ensuremath{\pi}}^{+}$. The state has mass difference $M({\ensuremath{\Xi}}_{c}^{0}{\ensuremath{\pi}}^{+})\ensuremath{-}M({\ensuremath{\Xi}}_{c}^{0})$ of $174.3\ifmmode\pm\else\textpm\fi{}0.5\ifmmode\pm\else\textpm\fi{}1.0\mathrm{MeV}{/c}^{2}$, and a width of $&lt;3.1\mathrm{MeV}{/c}^{2}$ (90% confidence level limit). We identify the new state as the ${\ensuremath{\Xi}}_{c}^{*+}$, the isospin partner of the recently discovered ${\ensuremath{\Xi}}_{c}^{*0}$.
DOI: 10.1103/physrevlett.76.4119
1996
Cited 51 times
First Observation of the Decay<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mo>→</mml:mo><mml:mi /><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">K</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mi>η</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mi>τ</mml:mi…
The decay ${\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}\ensuremath{\eta}{\ensuremath{\nu}}_{\ensuremath{\tau}}$ has been observed with the CLEO II detector. The $\ensuremath{\eta}$ meson is reconstructed using two decay channels, $\ensuremath{\eta}\ensuremath{\rightarrow}\ensuremath{\gamma}\ensuremath{\gamma}$ and ${\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}$. The measured branching fraction is $B({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}\ensuremath{\eta}{\ensuremath{\nu}}_{\ensuremath{\tau}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}(2.6\ifmmode\pm\else\textpm\fi{}0.5\ifmmode\pm\else\textpm\fi{}0.4)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, somewhat higher than theoretical estimates. An improved upper limit for the second-class-current decay ${\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\eta}{\ensuremath{\nu}}_{\ensuremath{\tau}}$ is set, $B({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\eta}{\ensuremath{\nu}}_{\ensuremath{\tau}})&lt;1.4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ at 95% C.L., consistent with theoretical expectations.
DOI: 10.1103/physrevlett.86.5661
2001
Cited 50 times
Bounds on the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">CP</mml:mi></mml:math>Asymmetry in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">b</mml:mi><mml:mspace /><mml:mo>→</mml:mo><mml:mspace /><mml:mi mathvariant="italic">s</mml:mi><mml:mi mathvariant="italic">γ</mml:mi></mml:math>Decays
We have measured the CP asymmetry A(CP) identical with[gamma(b-->sgamma)-gammab-->sgamma)]/[gamma(b-->sgamma)+gamma(b-->sgamma)] to be A(CP) = (-0.079+/-0.108+/-0.022) (1.0+/-0.030), implying that, at 90% confidence level, A(CP) lies between -0.27 and +0.10. These limits rule out some extreme non-standard-model predictions, but are consistent with most, as well as with the standard model.
DOI: 10.1103/physrevd.51.2053
1995
Cited 50 times
Υ(1<i>S</i>)→γ+noninteracting particles
We consider the decay of \ensuremath{\Upsilon}(1S) particles produced at CESR into a photon which is observed by the CLEO detector plus particles which are not seen. These could be real particles which fall outside of our acceptance, or particles which are noninteracting. We report the results of our search fo the process \ensuremath{\Upsilon}(1S)\ensuremath{\rightarrow}\ensuremath{\gamma}+``unseen'' for photon energies &gt;1 GeV, obtaining limits for the case where ``unseen'' is either a single particle or a particle-antiparticle pair. Our upper limits represent the highest sensitivity measurements for such decays to date.
DOI: 10.1103/physrevlett.69.3278
1992
Cited 46 times
Measurement of τ decays involving η mesons
The decay ${\mathrm{\ensuremath{\tau}}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}${\ensuremath{\nu}}_{\mathrm{\ensuremath{\tau}}}$${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$${\mathrm{\ensuremath{\pi}}}^{0}$\ensuremath{\eta} has been observed for the first time using the CLEO-II detector at the Cornell Electron Storage Ring. The measured branching ratio (0.17\ifmmode\pm\else\textpm\fi{}0.02\ifmmode\pm\else\textpm\fi{}0.02)%, agrees with the CVC (conserved vector current) prediction based on ${\mathit{e}}^{+}$${\mathit{e}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}${\mathrm{\ensuremath{\pi}}}^{+}$${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\eta} data. Upper limits on the branching ratios for other \ensuremath{\tau} decays to final states including \ensuremath{\eta} mesons are improved by an order of magnitude compared to previous measurements.
DOI: 10.1002/cpe.1402
2009
Cited 39 times
Interoperation of world-wide production e-Science infrastructures
Many production Grid and e-Science infrastructures have begun to offer services to end-users during the past several years with an increasing number of scientific applications that require access to a wide variety of resources and services in multiple Grids. Therefore, the Grid Interoperation Now—Community Group of the Open Grid Forum—organizes and manages interoperation efforts among those production Grid infrastructures to reach the goal of a world-wide Grid vision on a technical level in the near future. This contribution highlights fundamental approaches of the group and discusses open standards in the context of production e-Science infrastructures. Copyright © 2009 John Wiley & Sons, Ltd.
DOI: 10.1103/physrevlett.82.3746
1999
Cited 45 times
Measurement of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi><mml:mi /><mml:mo>→</mml:mo><mml:mi /><mml:mi mathvariant="italic">D</mml:mi><mml:mi>ℓ</mml:mi><mml:mi mathvariant="italic">ν</mml:mi></mml:math>Branching Fractions and Form Factor
Using a sample of 3.3 million B-meson decays collected with the CLEO detector at the Cornell Electron Storage Ring, we have studied $B^- \to D^0 \ell\nu$ and $\bar{B}^0 \to D^+ \ell\nu$ decays, where $\ell$ can be either an electron or muon. We distinguish $B \to D \ell\nu$ from other B semileptonic decays by examining the net momentum and energy of the particles recoiling against the D-lepton pairs. We find the decay rate $\Gamma(B \to D\ell\nu)$ = (14.1 +- 1.0 +- 1.2) ns-1 and derive branching fractions for $B^- \to D^0 \ell\nu$ and $\bar{B^0} \to D^+ \ell\nu$ of (2.32 +- 0.17 +- 0.20)% and 2.20 +- 0.16 +- 0.19)% respectively, where the uncertainties are statistical and systematic. We also investigate the $B \to D \ell\nu$ form factor and the implication of the result for $|V_{cb}|$.
DOI: 10.1145/3093338.3093363
2017
Cited 20 times
Data Access for LIGO on the OSG
During 2015 and 2016, the Laser Interferometer Gravitational-Wave Observatory (LIGO) conducted a three-month observing campaign. These observations delivered the first direct detection of gravitational waves from binary black hole mergers. To search for these signals, the LIGO Scientific Collaboration uses the PyCBC search pipeline. To deliver science results in a timely manner, LIGO collaborated with the Open Science Grid (OSG) to distribute the required computation across a series of dedicated, opportunistic, and allocated resources. To deliver the petabytes necessary for such a large-scale computation, our team deployed a distributed data access infrastructure based on the XRootD server suite and the CernVM File System (CVMFS). This data access strategy grew from simply accessing remote storage to a POSIX-based interface underpinned by distributed, secure caches across the OSG.
DOI: 10.48550/arxiv.2402.05244
2024
CRIU -- Checkpoint Restore in Userspace for computational simulations and scientific applications
Creating new materials, discovering new drugs, and simulating systems are essential processes for research and innovation and require substantial computational power. While many applications can be split into many smaller independent tasks, some cannot and may take hours or weeks to run to completion. To better manage those longer-running jobs, it would be desirable to stop them at any arbitrary point in time and later continue their computation on another compute resource; this is usually referred to as checkpointing. While some applications can manage checkpointing programmatically, it would be preferable if the batch scheduling system could do that independently. This paper evaluates the feasibility of using CRIU (Checkpoint Restore in Userspace), an open-source tool for the GNU/Linux environments, emphasizing the OSG's OSPool HTCondor setup. CRIU allows checkpointing the process state into a disk image and can deal with both open files and established network connections seamlessly. Furthermore, it can checkpoint traditional Linux processes and containerized workloads. The functionality seems adequate for many scenarios supported in the OSPool. However, some limitations prevent it from being usable in all circumstances.
DOI: 10.1103/physrevlett.82.492
1999
Cited 44 times
Observation of Two Narrow States Decaying into<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi mathvariant="italic">Ξ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">c</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:mrow><mml:mi mathvariant="italic">γ</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi …
We report the first observation of two narrow charmed strange baryons decaying to $\Xi_c^+\gamma$ and $\Xi_c^0\gamma$, respectively, using data from the CLEO II detector at CESR. We interpret the observed signals as the $\Xi_c^{+\prime}(c{su})$ and $\Xi_c^{0\prime}(c{sd})$, the symmetric partners of the well-established antisymmetric $\Xi_c^+(c[su])$ and $\Xi_c^0(c[sd])$. The mass differences $M(\Xi_c^{+\prime})-M(\Xi_c^+)$ and $M(\Xi_c^{0\prime})-M(\Xi_c^0)$ are measured to be $107.8\pm 1.7\pm 2.5$ and $107.0\pm 1.4\pm 2.5 MeV/c^2$, respectively.
DOI: 10.1103/physrevlett.80.2289
1998
Cited 43 times
Search for Inclusive<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">b</mml:mi><mml:mo>→</mml:mo><mml:mi mathvariant="italic">sl</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">l</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>
We have searched for the effective FCNC decays b->s l+l- using an inclusive method. We set upper limits on the branching ratios B(b->s e+e-) < 5.7 10^{-5}, B(b->s mu+mu-) < 5.8 10^{-5}, and B(b->s e+-mu-+) < 2.2 10^{-5} (at 90 %\ C.L.). Combining the di-electron and di-muon decay modes we find: B(b->s l+l-) < 4.2 10^{-5} (at 90 % C.L.).
DOI: 10.1103/physrevd.58.032002
1998
Cited 42 times
Improved measurement of the pseudoscalar decay constant<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>
We present a new determination of ${f}_{{D}_{s}}$ using 5 million ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}c\overline{c}$ events obtained with the CLEO II detector. Our value is derived from our new measured ratio $\ensuremath{\Gamma}{(D}_{s}^{+}\ensuremath{\rightarrow}{\ensuremath{\mu}}^{+}\ensuremath{\nu})/\ensuremath{\Gamma}{(D}_{s}^{+}\ensuremath{\rightarrow}\ensuremath{\varphi}{\ensuremath{\pi}}^{+})=0.173\ifmmode\pm\else\textpm\fi{}0.023\ifmmode\pm\else\textpm\fi{}0.035$. Using $\mathcal{B}{(D}_{s}^{+}\ensuremath{\rightarrow}\ensuremath{\varphi}{\ensuremath{\pi}}^{+})=(3.6\ifmmode\pm\else\textpm\fi{}0.9)$%, we extract ${f}_{{D}_{s}}=(280\ifmmode\pm\else\textpm\fi{}19\ifmmode\pm\else\textpm\fi{}28\ifmmode\pm\else\textpm\fi{}34) \mathrm{MeV}$. We compare this result with various model calculations.
DOI: 10.1103/physrevlett.76.3065
1996
Cited 40 times
Limits on Flavor Changing Neutral Currents in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>Meson Decays
Using the CLEO II detector at the Cornell Electron Storage Ring, we have searched for flavor changing neutral currents and lepton family number violations in ${D}^{0}$ meson decays. The upper limits on the branching fractions for ${D}^{0}\ensuremath{\rightarrow}{\ensuremath{\ell}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}$ and ${D}^{0}\ensuremath{\rightarrow}{X}^{0}{\ensuremath{\ell}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}$ are in the range ${10}^{\ensuremath{-}5}$ to ${10}^{\ensuremath{-}4}$, where ${X}^{0}$ can be a ${\ensuremath{\pi}}^{0}$, ${K}_{s}^{0}$, $\ensuremath{\eta}$, ${\ensuremath{\rho}}^{0}$, $\ensuremath{\omega}$, ${\overline{K}}^{*0}$, or $\ensuremath{\varphi}$ meson, and the ${\ensuremath{\ell}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}$ pair can be ${e}^{+}{e}^{\ensuremath{-}}$, ${\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$, or ${e}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\mu}}^{\ensuremath{\mp}}$. Although these limits are above the theoretical predictions, most are new or an order of magnitude lower than previous limits.
DOI: 10.1103/physrevlett.86.2732
2001
Cited 37 times
First Observation of the Decays<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">B</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi /><mml:mo>→</mml:mo><mml:mi /><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo><mml:mo>−</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="italic">p</mml:mi><mml:mrow><mml:…
We report the first observation of exclusive decays of the type B-->D(*)N_NX, where N is a nucleon. Using a sample of 9.7x10(6)B_B pairs collected with the CLEO detector operating at the Cornell Electron Storage Ring, we measure the branching fractions B(B0-->D(*-)p_p pi(+)) = (6.5(+1.3)(-1.2)+/-1.0)x10(-4) and B(B0-->D(*-)p_n) = (14.5(+3.4)(-3.0)+/-2.7)x10(-4). Antineutrons are identified by their annihilation in the CsI electromagnetic calorimeter.
DOI: 10.1051/epjconf/202429507014
2024
Demand-driven provisioning of Kubernetes-like resources in OSG
The OSG-operated Open Science Pool is an HTCondor-based virtual cluster that aggregates resources from compute clusters provided by several organizations. Most of the resources are not owned by OSG, so demand-based dynamic provisioning is important for maximizing usage without incurring excessive waste. OSG has long relied on GlideinWMS for most of its resource provisioning needs but is limited to resources that provide a Grid-compliant Compute Entrypoint. To work around this limitation, the OSG Software Team has developed a glidein container that resource providers could use to directly contribute to the OSPool. The problem with that approach is that it is not demand-driven, relegating it to backfill scenarios only. To address this limitation, a demand-driven direct provisioner of Kubernetes resources has been developed and successfully used on the NRP. The setup still relies on the OSG-maintained backfill container image but automates the provisioning matchmaking and successive requests. That provisioner has also been extended to support Lancium, a green computing cloud provider with a Kubernetes-like proprietary interface. The provisioner logic has been intentionally kept very simple, making this extension a low-cost project. Both NRP and Lancium resources have been provisioned exclusively using this mechanism for many months.
DOI: 10.1051/epjconf/202429507046
2024
CRIU - Checkpoint Restore in Userspace for computational simulations and scientific applications
Creating new materials, discovering new drugs, and simulating systems are essential processes for research and innovation and require substantial computational power. While many applications can be split into many smaller independent tasks, some cannot and may take hours or weeks to run to completion. To better manage those longer-running jobs, it would be desirable to stop them at any arbitrary point in time and later continue their computation on another compute resource; this is usually referred to as checkpointing. While some applications can manage checkpointing programmatically, it would be preferable if the batch scheduling system could do that independently. This paper evaluates the feasibility of using CRIU (Checkpoint Restore in Userspace), an open-source tool for the GNU/Linux environments, emphasizing the OSG’s OSPool HTCondor setup. CRIU allows checkpointing the process state into a disk image and can deal with both open files and established network connections seamlessly. Furthermore, it can checkpoint traditional Linux processes and containerized workloads. The functionality seems adequate for many scenarios supported in the OSPool. However, some limitations prevent it from being usable in all circumstances.
DOI: 10.1051/epjconf/202429504003
2024
Adoption of a token-based authentication model for the CMS Submission Infrastructure
The CMS Submission Infrastructure (SI) is the main computing resource provisioning system for CMS workloads. A number of HTCondor pools are employed to manage this infrastructure, which aggregates geographically distributed resources from the WLCG and other providers. Historically, the model of authentication among the diverse components of this infrastructure has relied on the Grid Security Infrastructure (GSI), based on identities and X509 certificates. In contrast, commonly used modern authentication standards are based on capabilities and tokens. The WLCG has identified this trend and aims at a transparent replacement of GSI for all its workload management, data transfer and storage access operations, to be completed during the current LHC Run 3. As part of this effort, and within the context of CMS computing, the Submission Infrastructure group is in the process of phasing out the GSI part of its authentication layers, in favor of IDTokens and Scitokens. The use of tokens is already well integrated into the HTCondor Software Suite, which has allowed us to fully migrate the authentication between internal components of SI. Additionally, recent versions of the HTCondor-CE support tokens as well, enabling CMS resource requests to Grid sites employing this CE technology to be granted by means of token exchange. After a rollout campaign to sites, successfully completed by the third quarter of 2022, the totality of HTCondor CEs in use by CMS are already receiving Scitoken-based pilot jobs. On the ARC CE side, a parallel campaign was launched to foster the adoption of the REST interface at CMS sites (required to enable token-based job submission via HTCondor-G), which is nearing completion as well. In this contribution, the newly adopted authentication model will be described. We will then report on the migration status and final steps towards complete GSI phase out in the CMS SI.
DOI: 10.1051/epjconf/202429503036
2024
Repurposing of the Run 2 CMS High Level Trigger Infrastructure as a Cloud Resource for Offline Computing
The former CMS Run 2 High Level Trigger (HLT) farm is one of the largest contributors to CMS compute resources, providing about 25k job slots for offline computing. This CPU farm was initially employed as an opportunistic resource, exploited during inter-fill periods, in the LHC Run 2. Since then, it has become a nearly transparent extension of the CMS capacity at CERN, being located on-site at the LHC interaction point 5 (P5), where the CMS detector is installed. This resource has been configured to support the execution of critical CMS tasks, such as prompt detector data reconstruction. It can therefore be used in combination with the dedicated Tier 0 capacity at CERN, in order to process and absorb peaks in the stream of data coming from the CMS detector. The initial configuration for this resource, based on statically configured VMs, provided the required level of functionality. However, regular operations of this cluster revealed certain limitations compared to the resource provisioning and use model employed in the case of WLCG sites. A new configuration, based on a vacuum-like model, has been implemented for this resource in order to solve the detected shortcomings. This paper reports about this redeployment work on the permanent cloud for an enhanced support to CMS offline computing, comparing the former and new models’ respective functionalities, along with the commissioning effort for the new setup.
DOI: 10.1051/epjconf/202429501001
2024
400Gbps benchmark of XRootD HTTP-TPC
Due to the increased demand of network traffic expected during the HL-LHC era, the T2 sites in the USA will be required to have 400Gbps of available bandwidth to their storage solution. With the above in mind we are pursuing a scale test of XRootD software when used to perform Third Party Copy transfers using the HTTP protocol. Our main objective is to understand the possible limitations in the software stack to achieve the target transfer rate; to that end we have set up a testbed of multiple XRootD servers in both UCSD and Caltech which are connected through a dedicated link capable of 400 Gbps end-to-end. Building upon our experience deploying containerized XRootD servers, we use Kubernetes to easily deploy and test different configurations of our testbed. In this work, we will present our experience doing these tests and the lessons learned.
DOI: 10.1051/epjconf/202429501044
2024
Predicting Resource Utilization Trends with Southern California Petabyte Scale Cache
Large community of high-energy physicists share their data all around world making it necessary to ship a large number of files over wide- area networks. Regional disk caches such as the Southern California Petabyte Scale Cache have been deployed to reduce the data access latency. We observe that about 94% of the requested data volume were served from this cache, without remote transfers, between Sep. 2022 and July 2023. In this paper, we show the predictability of the resource utilization by exploring the trends of recent cache usage. The time series based prediction is made with a machine learning approach and the prediction errors are small relative to the variation in the input data. This work would help understanding the characteristics of the resource utilization and plan for additional deployments of caches in the future.
DOI: 10.1051/epjconf/202429501009
2024
Automated Network Services for Exascale Data Movement
The Large Hadron Collider (LHC) experiments distribute data by leveraging a diverse array of National Research and Education Networks (NRENs), where experiment data management systems treat networks as a “blackbox” resource. After the High Luminosity upgrade, the Compact Muon Solenoid (CMS) experiment alone will produce roughly 0.5 exabytes of data per year. NREN Networks are a critical part of the success of CMS and other LHC experiments. However, during data movement, NRENs are unaware of data priorities, importance, or need for quality of service, and this poses a challenge for operators to coordinate the movement of data and have predictable data flows across multi-domain networks. The overarching goal of SENSE (The Software-defined network for End-to-end Networked Science at Exascale) is to enable National Labs and universities to request and provision end-to-end intelligent network services for their application workflows leveraging SDN (Software-Defined Networking) capabilities. This work aims to allow LHC Experiments and Rucio, the data management software used by CMS Experiment, to allocate and prioritize certain data transfers over the wide area network. In this paper, we will present the current progress of the integration of SENSE, Multi-domain end-to-end SDN Orchestration with QoS (Quality of Service) capabilities, with Rucio, the data management software used by CMS Experiment.
DOI: 10.1051/epjconf/202429511009
2024
Evaluation of ARM CPUs for IceCube available through Google Kubernetes Engine
The IceCube experiment has substantial simulation needs and is in continuous search for the most cost-effective ways to satisfy them. The most CPU-intensive part relies on CORSIKA, a cosmic ray air shower simulation. Historically, IceCube relied exclusively on x86-based CPUs, like Intel Xeon and AMD EPYC, but recently server-class ARM-based CPUs are also becoming available, both on-prem and in the cloud. In this paper we present our experience in running a sample CORSIKA simulation on both ARM and x86 CPUs available through Google Kubernetes Engine (GKE). We used the production binaries for the x86 instances, but had to build the binaries for ARM instances from source code, which turned out to be mostly painless. Our benchmarks show that ARM-based CPUs in GKE were not only the most cost-effective but were also the fastest in absolute terms in all the tested configurations. While the advantage is not drastic, about 20% in cost-effectiveness and less than 10% in absolute terms, it is still large enough to warrant an investment in ARM support for IceCube.
DOI: 10.1051/epjconf/202429511011
2024
IceCube experience using XRootD-based Origins with GPU workflows in PNRP
The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the geographic South Pole. Understanding detector systematic effects is a continuous process. This requires the Monte Carlo simulation to be updated periodically to quantify potential changes and improvements in science results with more detailed modeling of the systematic effects. IceCube’s largest systematic effect comes from the optical properties of the ice the detector is embedded in. Over the last few years there have been considerable improvements in the understanding of the ice, which require a significant processing campaign to update the simulation. IceCube normally stores the results in a central storage system at the University of Wisconsin–Madison, but it ran out of disk space in 2022. The Prototype National Research Platform (PNRP) project thus offered to provide both GPU compute and storage capacity to IceCube in support of this activity. The storage access was provided via XRootD-based OSDF Origins, a first for IceCube computing. We report on the overall experience using PNRP resources, with both successes and pain points.
DOI: 10.1103/physrevlett.80.4127
1998
Cited 37 times
Investigation of Semileptonic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Meson Decays to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">p</mml:mi></mml:math>-Wave Charm Mesons
We have studied semileptonic $B$ meson decays with a P-wave charm meson in the final state using 3.29 x 10^6 B\bar{B} events collected by the CLEO~II detector at the Cornell Electron-positron Storage Ring. We find a value for the exclusive semileptonic product branching fraction: Br(B^- -> D_1^0 l^- \bar{\nu}) x Br(D_1^0 -> D^{*+}\pi^-) = (0.373 \pm 0.085 \pm 0.052 \pm 0.024)% and an upper limit for Br(B^- -> D_2^{*0} l^- \bar{\nu}) x Br(D_2^{*0} -> D^{*+}\pi^-) < 0.16%$ (90% C.L.). These results indicate that at least 20% of the total B^- semileptonic rate is unaccounted for by the observed exclusive decays, B^- -> D^0 l^- \bar{\nu}, B^- -> D^{*0} l^- \bar{\nu}, B^- -> D_1^0 l^- \bar{\nu}, and B^- -> D_2^{*0} l^- \bar{\nu}.
DOI: 10.1103/physrevlett.75.785
1995
Cited 36 times
Search for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi><mml:mi /><mml:mo>→</mml:mo><mml:mi /><mml:mi mathvariant="italic">ℓ</mml:mi><mml:mrow><mml:msub><mml:mover><mml:mrow><mml:mi>ν</mml:mi></mml:mrow><mml:mrow><mml:mi>¯</mml:mi></mml:mrow></mml:mover><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>
We search for the decays ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{\nu}}}_{\ensuremath{\ell}}$ in a sample of $2.2\ifmmode\times\else\texttimes\fi{}{10}^{6}$ charged $B$ decays using the CLEO detector. We see no evidence for a signal in any channel and set upper limits on the branching fractions of $B({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\tau}}^{\ensuremath{-}}{\overline{\ensuremath{\nu}}}_{\ensuremath{\tau}})&lt;2.2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$, $B({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\mu}}^{\ensuremath{-}}{\overline{\ensuremath{\nu}}}_{\ensuremath{\mu}})&lt;2.1\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$, and $B({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{e}^{\ensuremath{-}}{\overline{\ensuremath{\nu}}}_{e})&lt;1.5\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ at the 90% confidence level.
DOI: 10.1103/physrevd.53.6037
1996
Cited 35 times
Decays of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math>leptons to final states containing<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math>mesons
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we have studied the decays of leptons produced through e ϩ e Ϫ annihilation into final states containing K S 0 mesons, observed through their decays to ϩ Ϫ .We present branching fractions for decays to five final states: Ϫ →K 0 h Ϫ , Ϫ →K 0 h Ϫ 0 , Ϫ →K 0 K Ϫ , Ϫ →K 0 K Ϫ 0 , and Ϫ →K S 0 K S 0 h Ϫ , where K 0 h Ϫ denotes the sum of the processes involving K ¯0 Ϫ and K 0 K Ϫ particle combinations.Substructure and mass spectra in these final states are also addressed.
DOI: 10.1103/physrevlett.71.3070
1993
Cited 35 times
Measurement of the absolute branching fraction for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>→<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">K</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:mrow></mml:…
Using 1.79 ${\mathrm{fb}}^{\mathrm{\ensuremath{-}}1}$ of data recorded by the CLEO II detector we have measured the absolute branching fraction for ${\mathit{D}}^{0}$\ensuremath{\rightarrow}${\mathit{K}}^{\mathrm{\ensuremath{-}}}$${\mathrm{\ensuremath{\pi}}}^{+}$. The angular correlation between the ${\mathrm{\ensuremath{\pi}}}^{+}$ emitted in the decay ${\mathit{D}}^{\mathrm{*}+}$\ensuremath{\rightarrow}${\mathit{D}}^{0}$${\mathrm{\ensuremath{\pi}}}^{+}$, and the jet direction in ${\mathit{e}}^{+}$${\mathit{e}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}cc\ifmmode\bar\else\textasciimacron\fi{} events, is used to determine the total number of inclusive ${\mathit{D}}^{0}$ mesons produced from this source. The subsequent reconstruction of the decay chain ${\mathit{D}}^{\mathrm{*}+}$\ensuremath{\rightarrow}${\mathit{D}}^{0}$${\mathrm{\ensuremath{\pi}}}^{+}$,${\mathit{D}}^{0}$\ensuremath{\rightarrow}${\mathit{K}}^{\mathrm{\ensuremath{-}}}$${\mathrm{\ensuremath{\pi}}}^{+}$ allows a measurement of the absolute ${\mathit{D}}^{0}$\ensuremath{\rightarrow}${\mathit{K}}^{\mathrm{\ensuremath{-}}}$${\mathrm{\ensuremath{\pi}}}^{+}$ branching fraction. Correcting for decay radiation in the final state, we find scrB(${\mathit{D}}^{0}$\ensuremath{\rightarrow}${\mathit{K}}^{\mathrm{\ensuremath{-}}}$${\mathrm{\ensuremath{\pi}}}^{+}$)=[3.95\ifmmode\pm\else\textpm\fi{}0.08(stat)\ifmmode\pm\else\textpm\fi{}0.17(syst)]%.
DOI: 10.1103/physrevlett.70.1207
1993
Cited 34 times
Tau decays with one charged particle plus multiple<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">π</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>’s
With the CLEO-II detector at the Cornell Electron Storage Ring, we have measured branching fractions for tau lepton decay into one-prong final states with multiple ${\mathrm{\ensuremath{\pi}}}^{0}$'s ${\mathit{B}}_{\mathit{h}\mathit{n}\mathrm{\ensuremath{\pi}}}^{0}$, normalized to the branching fraction for tau decay into one charged particle and a single ${\mathrm{\ensuremath{\pi}}}^{0}$. We find ${\mathit{B}}_{\mathit{h}2\mathrm{\ensuremath{\pi}}}^{0}$/${\mathit{B}}_{\mathit{h}\mathrm{\ensuremath{\pi}}}^{0}$=0.345\ifmmode\pm\else\textpm\fi{}0.006\ifmmode\pm\else\textpm\fi{}0.016, ${\mathit{B}}_{\mathit{h}3\mathrm{\ensuremath{\pi}}}^{0}$/${\mathit{B}}_{\mathit{h}\mathrm{\ensuremath{\pi}}}^{0}$=0.041 \ifmmode\pm\else\textpm\fi{}0.003\ifmmode\pm\else\textpm\fi{}0.005, and ${\mathit{B}}_{\mathit{h}4\mathrm{\ensuremath{\pi}}}^{0}$/${\mathit{B}}_{\mathit{h}\mathrm{\ensuremath{\pi}}}^{0}$=0.006\ifmmode\pm\else\textpm\fi{}0.002\ifmmode\pm\else\textpm\fi{}0.002.
DOI: 10.1103/physrevlett.72.3762
1994
Cited 32 times
Measurement of the branching fraction<i>scrB</i>(<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">τ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>→<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">h</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi…
Using data from the CLEO II detector at CESR, we measure ${\cal B}(\tau^\pm\rightarrow h^\pm\pi^0\nu_\tau)$ where $h^\pm$ refers to either $\pi^\pm$ or $K^\pm$. We use three different methods to measure this branching fraction. The combined result is ${\cal B}(\tau^\pm\rightarrow h^\pm\pi^0\nu_\tau) = 0.2587 \pm 0.0012 \pm 0.0042$, in good agreement with Standard Model predictions. This result, in combination with other precision measurements, reduces the significance of the one-prong problem in tau decays. A postscript version is available through World-Wide-Web in http://w4.lns.cornell.edu/public/CLNS/1994/
DOI: 10.1103/physrevd.47.791
1993
Cited 31 times
Lepton asymmetry measurements in<i>B</i>¯→<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">*</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">l</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:…
We present a measurement of the lepton decay asymmetry ${\mathit{A}}_{\mathrm{fb}}$ in the reaction B\ifmmode\bar\else\textasciimacron\fi{}\ensuremath{\rightarrow}${\mathit{D}}^{\mathrm{*}}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}_{\mathit{l}}$ using data collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR). The value of ${\mathit{A}}_{\mathrm{fb}}$ confirms that the chirality of the weak interaction is predominantly left-handed in b\ensuremath{\rightarrow}c transitions as expected in the standard model, if it is assumed that the lepton current is also left-handed. Using ${\mathit{A}}_{\mathrm{fb}}$ and the previously determined branching ratio, ${\mathit{q}}^{2}$ distribution, and ${\mathit{D}}^{\mathrm{*}}$ polarization, we obtain the first measurement of the form-factor ratios that are used to describe this semileptonic decay.
DOI: 10.48550/arxiv.1405.1617
2014
Cited 15 times
Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report
We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 3--21 June, 2013). Our report includes new computational tool developments, studies of the implications of the Higgs boson discovery on new physics, important signatures for searches for natural new physics at the LHC, new studies of flavour aspects of new physics, and assessments of the interplay between direct dark matter searches and the LHC.
DOI: 10.1007/978-3-030-50743-5_2
2020
Cited 12 times
Running a Pre-exascale, Geographically Distributed, Multi-cloud Scientific Simulation
As we approach the Exascale era, it is important to verify that the existing frameworks and tools will still work at that scale. Moreover, public Cloud computing has been emerging as a viable solution for both prototyping and urgent computing. Using the elasticity of the Cloud, we have thus put in place a pre-exascale HTCondor setup for running a scientific simulation in the Cloud, with the chosen application being IceCube’s photon propagation simulation. I.e. this was not a purely demonstration run, but it was also used to produce valuable and much needed scientific results for the IceCube collaboration. In order to reach the desired scale, we aggregated GPU resources across 8 GPU models from many geographic regions across Amazon Web Services, Microsoft Azure, and the Google Cloud Platform. Using this setup, we reached a peak of over 51k GPUs corresponding to almost 380 PFLOP32s, for a total integrated compute of about 100k GPU hours. In this paper we provide the description of the setup, the problems that were discovered and overcome, as well as a short description of the actual science output of the exercise.
DOI: 10.1103/physrevd.55.2559
1997
Cited 30 times
Experimental tests of lepton universality in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math>decay
The branching fractions for $\ensuremath{\tau}\ensuremath{\rightarrow}e\ensuremath{\nu}{\ensuremath{\nu}}_{\ensuremath{\tau}},$ $\ensuremath{\mu}\ensuremath{\nu}{\ensuremath{\nu}}_{\ensuremath{\tau}},$ and $h{\ensuremath{\nu}}_{\ensuremath{\tau}}$ are measured using data collected with the CLEO detector at the CESR ${e}^{+}{e}^{\ensuremath{-}}$ collider: ${\mathcal{B}}_{e}$=0.1776$\ifmmode\pm\else\textpm\fi{}$0.0006$\ifmmode\pm\else\textpm\fi{}$0.0017, ${\mathcal{B}}_{\ensuremath{\mu}}$=0.1737$\ifmmode\pm\else\textpm\fi{}$0.0008$\ifmmode\pm\else\textpm\fi{}$0.0018, and ${\mathcal{B}}_{h}$=0.1152$\ifmmode\pm\else\textpm\fi{}$0.0005$\ifmmode\pm\else\textpm\fi{}$0.0012, where the first error is statistical, the second systematic, and $h$ refers to either a charged $\ensuremath{\pi}$ or $K$. Also measured is the $\ensuremath{\tau}$ mass, ${m}_{\ensuremath{\tau}}$=(1778.2$\ifmmode\pm\else\textpm\fi{}$1.4) MeV. Lepton universality is affirmed by the relative branching fractions $({\mathcal{B}}_{\ensuremath{\mu}}$/${\mathcal{B}}_{e}$=0.9777$\ifmmode\pm\else\textpm\fi{}$0.0063$\ifmmode\pm\else\textpm\fi{}$0.0087, ${\mathcal{B}}_{h}$/${\mathcal{B}}_{e}$=0.6484$\ifmmode\pm\else\textpm\fi{}$0.0041$\ifmmode\pm\else\textpm\fi{}$0.0060) and the charged-current gauge coupling-constant ratios ${(g}_{\ensuremath{\mu}}{/g}_{e}$=1.0026$\ifmmode\pm\else\textpm\fi{}$0.0055, ${g}_{\ensuremath{\tau}}{/g}_{\ensuremath{\mu}}$=0.9990$\ifmmode\pm\else\textpm\fi{}$0.0098). The $\ensuremath{\tau}$ mass result may be recast as a $\ensuremath{\tau}$ neutrino mass limit, ${m}_{{\ensuremath{\nu}}_{\ensuremath{\tau}}}&lt;$60 MeV at 95% C.L.
DOI: 10.1103/physrevd.56.3783
1997
Cited 30 times
Inclusive decays<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi><mml:mo>→</mml:mo><mml:mi>DX</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi><mml:mo>→</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mi>X</mml:mi></mml:math>
We report new measurements of the differential and total branching ratios for inclusive B decay to D^0, D^+ and D^{*+} and the first measurement of the same quantities for inclusive B decay to $D^{*0}$. Here B is the mixture of B_d and B_u from $\Upsilon(4S)$ decay. Furthermore, since more than one charm particle (or antiparticle) of the same kind can be produced in B decay, here ``inclusive B branching ratio'' is used to mean the average number of charm particles and their antiparticles of a certain species produced in B decay. We obtain the following results (the first error is statistical, the second systematic of this analysis, the third is propagated from other measurements): ${\cal B}(B\to D^0 X) = (0.636\pm 0.014\pm 0.019\pm 0.018), {\cal B}(B\to D^+ X) = (0.235\pm 0.009\pm 0.009\pm 0.024), {\cal B}(B\to D^{*0} X) = (0.247\pm 0.012\pm 0.018\pm 0.018), {\cal B}(B\to D^{*+} X) = (0.239\pm 0.011\pm 0.014\pm 0.009)$. The following ratio of branching ratios is not affected by most of the systematic errors: ${\cal B}(B\to D^{*0} X)/{\cal B}(B\to D^{*+} X) = (1.03\pm 0.07\pm 0.09\pm 0.08).$ We also report the first measurement of the momentum-dependent $D^{*0}$ polarization and a new measurement of the $D^{*+}$ polarization in inclusive B decay. Using these measurements and other CLEO results and making some additional assumptions, we calculate the average number of c and $\bar c$ quarks produced in B decay to be $< n_c > = 1.10\pm 0.05$.
DOI: 10.1016/0370-2693(93)91448-v
1993
Cited 30 times
Production and decay of the Ds1 (2536)+
Using the CLEO-II detector at CESR, we have observed the Ds1(2536)+ in the decay modes Ds1+→D∗0K+ and D∗+KS+, and measured its fragmentation and production ratios. Using the helicity angle distribution of the daugter D∗0, we obtain new evidence for the assignment of 1+ for the spin and parity of the Ds1+. We also set upper limits on the decays Ds1+→Ds∗+λ, D0K+ and D+Ks0.
DOI: 10.1103/physrevlett.89.251801
2002
Cited 29 times
Observation of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi><mml:mo>→</mml:mo><mml:msubsup><mml:mi>K</mml:mi><mml:mi>S</mml:mi><mml:mn>0</mml:mn></mml:msubsup><mml:msup><mml:mi>π</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:msup><mml:mi>π</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:math>and Evidence for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi><mml:mo>→</mml:mo><mml:msup><mml:mi>K</mml:mi><mml:mrow><mml:…
We report on a search for charmless hadronic B decays to the three-body final states K(0)(S)h(+)pi(-), K(+)h(-)pi(0), K(0)(S)h(+)pi(0) (h(+/-) denotes a charged pion or kaon), and their charge conjugates, using 13.5 fb(-1) of integrated luminosity produced near sqrt[s]=10.6 GeV, and collected with the CLEO detector. We observe the decay B-->K0pi(+)pi(-) with a branching fraction (50(+10)(-9)(stat.)+/-7(syst.))x10(-6) and the decay B-->K(*+)(892)pi(-) with a branching fraction (16(+6)(-5)(stat.)+/-2(syst.))x10(-6).
DOI: 10.1103/physrevd.49.5690
1994
Cited 29 times
First measurement of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mrow><mml:mi>Γ</mml:mi><mml:mo>(</mml:mo><mml:mrow><mml:msubsup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:mrow><mml:mo>→</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mi>ν</mml:mi><mml:mo>)</mml:mo></mml:…
We present a measurement of Γ(Ds+→μ+ν)Γ(Ds+→φπ+)=0.245±0.052±0.074. Using this ratio and B(Ds+→φπ+)=(3.7±0.9)% we extract fDs=344±37±52±42 MeV, where the last error is due to the uncertainty in the Ds+→φπ+ absolute branching ratio. This result is larger than most theoretical predictions.Received 3 August 1993DOI:https://doi.org/10.1103/PhysRevD.49.5690©1994 American Physical Society
DOI: 10.1103/physrevd.55.5273
1997
Cited 29 times
Measurement of the direct photon spectrum in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Υ</mml:mi><mml:mn /><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mi>S</mml:mi><mml:mo>)</mml:mo><mml:mn /></mml:math>decays
Using data taken with the CLEO II detector at the Cornell Electron Storage Ring, we have determined the ratio of branching fractions: ${R}_{\ensuremath{\gamma}}\ensuremath{\equiv}\ensuremath{\Gamma}(\ensuremath{\Upsilon}(1S)\ensuremath{\rightarrow}\ensuremath{\gamma}\mathrm{gg})/\ensuremath{\Gamma}(\ensuremath{\Upsilon}(1S)\ensuremath{\rightarrow}\mathrm{ggg})=[2.75\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.15(\mathrm{syst})]%$. From this ratio, we have determined the QCD scale parameter ${\ensuremath{\Lambda}}_{\overline{\mathrm{MS}}}$ (defined in the modified minimal subtraction scheme) to be ${\ensuremath{\Lambda}}_{\overline{\mathrm{MS}}}=233\ifmmode\pm\else\textpm\fi{}11\ifmmode\pm\else\textpm\fi{}59$ MeV, from which we determine a value for the strong coupling constant ${\ensuremath{\alpha}}_{s}{(M}_{\ensuremath{\Upsilon}(1S)})=0.163\ifmmode\pm\else\textpm\fi{}0.002\ifmmode\pm\else\textpm\fi{}0.014$, or ${\ensuremath{\alpha}}_{s}{(M}_{Z})=0.110\ifmmode\pm\else\textpm\fi{}0.001\ifmmode\pm\else\textpm\fi{}0.007$.
DOI: 10.1103/physrevlett.73.934
1994
Cited 26 times
Study of the five-charged-pion decay of the τ lepton
The branching fractions for the five-charged-particle decays of the \ensuremath{\tau} lepton have been measured in ${\mathit{e}}^{+}$${\mathit{e}}^{\mathrm{\ensuremath{-}}}$ annihilations using the CLEO II detector at the Cornell Electron Storage Ring. Assuming all charged particles to be pions, the results are B(3${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$2${\mathrm{\ensuremath{\pi}}}^{+}$\ensuremath{\ge}0 neutrals ${\ensuremath{\nu}}_{\mathrm{\ensuremath{\tau}}}$)=(0.097\ifmmode\pm\else\textpm\fi{}0.005\ifmmode\pm\else\textpm\fi{}0.011)%, B(3${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$2${\mathrm{\ensuremath{\pi}}}^{+}$${\ensuremath{\nu}}_{\mathrm{\ensuremath{\tau}}}$)=(0.077\ifmmode\pm\else\textpm\fi{}0.005 \ifmmode\pm\else\textpm\fi{}0.009)%, B(3${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$2${\mathrm{\ensuremath{\pi}}}^{+}$${\mathrm{\ensuremath{\pi}}}^{0}$${\ensuremath{\nu}}_{\mathrm{\ensuremath{\tau}}}$)=(0.019\ifmmode\pm\else\textpm\fi{}0.004\ifmmode\pm\else\textpm\fi{}0.004)%, and B(3${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$2${\mathrm{\ensuremath{\pi}}}^{+}$2${\mathrm{\ensuremath{\pi}}}^{0}$${\ensuremath{\nu}}_{\mathrm{\ensuremath{\tau}}}$)0.011% at the 90% C.L. B(3${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$2${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$${\mathrm{\ensuremath{\pi}}}^{0}$${\ensuremath{\nu}}_{\mathrm{\ensuremath{\tau}}}$) is measured for the first time by exclusive ${\mathrm{\ensuremath{\pi}}}^{0}$ reconstruction. The results are compared with the predictions from the partially conserved-axial-current and conserved-vector-current hypotheses assuming isospin invariance.
DOI: 10.1103/physrevd.50.5484
1994
Cited 25 times
Measurement of the cross section for γγ→<i>pp</i>¯
A measurement of the cross section for γγ→pp¯ is performed at two-photon center-of-mass energies between 2.00 and 3.25 GeV. These results are obtained using e+e−→e+e−pp¯ events selected from 1.31 fb−1 of data taken with the CLEO II detector. The measured cross section is in reasonable agreement with previous measurements and is in excellent agreement with recent calculations based on a diquark model. However, leading order QCD calculations performed using the Brodsky-Lepage formalism are well below the measured cross section.Received 1 September 1993DOI:https://doi.org/10.1103/PhysRevD.50.5484©1994 American Physical Society
DOI: 10.1109/bdc.2015.33
2015
Cited 11 times
Any Data, Any Time, Anywhere: Global Data Access for Science
Data access is key to science driven by distributed high-throughput computing (DHTC), an essential technology for many major research projects such as High Energy Physics (HEP) experiments. However, achieving efficient data access becomes quite difficult when many independent storage sites are involved because users are burdened with learning the intricacies of accessing each system and keeping careful track of data location. We present an alternate approach: the Any Data, Any Time, Anywhere infrastructure. Combining several existing software products, AAA presents a global, unified view of storage systems - a "data federation," a global filesystem for software delivery, and a workflow management system. We present how one HEP experiment, the Compact Muon Solenoid (CMS), is utilizing the AAA infrastructure and some simple performance metrics.
DOI: 10.1103/physrevlett.82.4586
1999
Cited 25 times
Measurement of Charm Meson Lifetimes
We report measurements of the ${D}^{0}$, ${D}^{+}$, and ${D}_{s}^{+}$ meson lifetimes using $3.7{\mathrm{fb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ annihilation data collected near the $\ensuremath{\Upsilon}(4S)$ resonance with the CLEO detector. The measured lifetimes of the ${D}^{0}$, ${D}^{+}$, and ${D}_{s}^{+}$ mesons are $408.5\ifmmode\pm\else\textpm\fi{}{4.1}_{\ensuremath{-}3.4}^{+3.5}\mathrm{fs}$, $1033.6\ifmmode\pm\else\textpm\fi{}{22.1}_{\ensuremath{-}12.7}^{+9.9}\mathrm{fs}$, and $486.3\ifmmode\pm\else\textpm\fi{}{15.0}_{\ensuremath{-}5.1}^{+4.9}\mathrm{fs}$. The precisions of these lifetimes are comparable to those of the best previous measurements, and the systematic errors are very different. In a single experiment we find that the ratio of the ${D}_{s}^{+}$ and ${D}^{0}$ lifetimes is $1.19\ifmmode\pm\else\textpm\fi{}0.04$.
DOI: 10.1103/physrevlett.79.3125
1997
Cited 24 times
Observation of Exclusive<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi></mml:math>Decays to Final States Containing a Charmed Baryon
Using data collected in the region of the Υ(4S) resonance with the CLEO-II detector, we report on the first observation of exclusive decays of the B meson to final states with a charmed baryon. We have measured the branching fractions B(B−→Λ+c¯pπ−)=(0.62+0.23−0.20±0.11±0.10)×10−3 and B(¯B0→Λ+c¯pπ+π−)=(1.33+0.46−0.42±0.31±0.21)×10−3, where the first error is statistical, the second is systematic, and the third is due to uncertainty in the Λ+c branching fractions. In addition, we report upper limits for final states of the form ¯B→Λ+c¯p(nπ) and Λ+c¯p(nπ)π0, where (nπ) denotes up to four charged pions.Received 12 July 1996DOI:https://doi.org/10.1103/PhysRevLett.79.3125©1997 American Physical Society
DOI: 10.1103/physrevlett.70.138
1993
Cited 24 times
Search for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">τ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>→γ<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:mrow></mml:msup></mml:mrow></…
A search for the lepton mumber violating decay of the \ensuremath{\tau} lepton to the \ensuremath{\gamma}\ensuremath{\mu} final state has been performed with the CLEO II detector at the Cornell ${\mathit{e}}^{+}$${\mathit{e}}^{\mathrm{\ensuremath{-}}}$ storage ring CESR. In a data sample that corresponds to an integrated luminosity of 1.55 ${\mathrm{fb}}^{\mathrm{\ensuremath{-}}1}$, we observe no candidates in the signal region. We thus determine an upper limit of B(${\mathrm{\ensuremath{\tau}}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}\ensuremath{\gamma}${\mathrm{\ensuremath{\mu}}}^{\mathrm{\ensuremath{-}}}$)4.2\ifmmode\times\else\texttimes\fi{}${10}^{\mathrm{\ensuremath{-}}6}$ at 90% confidence level.
DOI: 10.1103/physrevlett.70.2681
1993
Cited 23 times
Search for exclusive<i>b</i>→<i>u</i>semileptonic decays of<i>B</i>mesons
Using a sample of 935 000 BB\ifmmode\bar\else\textasciimacron\fi{} pairs collected with the CLEO-II detector at the Cornell Electron Storage Ring, we have obtained upper limits on the branching ratios for the b\ensuremath{\rightarrow}${\mathit{ul}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{} processes ${\mathit{B}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}\ensuremath{\omega}${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{}, ${\mathit{B}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}${\mathrm{\ensuremath{\rho}}}^{0}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{}, and B${\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}^{0}$\ensuremath{\rightarrow}${\mathrm{\ensuremath{\rho}}}^{+}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{}. The combined result using the relationships among the widths for these three modes is B(${\mathit{B}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}${\mathrm{\ensuremath{\rho}}}^{0}$${\mathit{l}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\nu}\ifmmode\bar\else\textasciimacron\fi{})(1.6--2.7)\ifmmode\times\else\texttimes\fi{}${10}^{\mathrm{\ensuremath{-}}4}$ at 90% C.L., where the range of values is due to model dependence of the detection efficiencies. These measurements yield the limits \ensuremath{\Vert}${\mathit{V}}_{\mathit{u}\mathit{b}}$/${\mathit{V}}_{\mathit{c}\mathit{b}}$\ensuremath{\Vert}0.08--0.13.
DOI: 10.1103/physrevlett.86.4467
2001
Cited 21 times
Study of τ Decays to Six Pions and a Neutrino
The tau decays to six-pion final states have been studied with the CLEO detector at the Cornell Electron Storage Ring. The measured branching fractions are B(tau(-)-->2pi(-)pi(+)3pi(0)nu(tau)) = (2.2+/-0.3+/-0.4)x10(-4) and B(tau(-)-->3pi(-)2pi(+)pi(0)nu(tau)) = (1.7+/-0.2+/-0.2)x10(-4). A search for substructure in these decays shows that they are saturated by intermediate states with eta or omega mesons. We present the first observation of the decay tau(-)-->2pi(-)pi(+)omega(nu)tau and the branching fraction is measured to be (1.2+/-0.2+/-0.1)x10(-4). The measured branching fractions are in good agreement with the isospin expectations but somewhat below the conserved-vector-current predictions.
DOI: 10.1007/s10723-010-9152-1
2010
Cited 12 times
Distributed Analysis in CMS
The CMS experiment expects to manage several Pbytes of data each year during the LHC programme, distributing them over many computing sites around the world and enabling data access at those centers for analysis. CMS has identified the distributed sites as the primary location for physics analysis to support a wide community with thousands potential users. This represents an unprecedented experimental challenge in terms of the scale of distributed computing resources and number of user. An overview of the computing architecture, the software tools and the distributed infrastructure is reported. Summaries of the experience in establishing efficient and scalable operations to get prepared for CMS distributed analysis are presented, followed by the user experience in their current analysis activities.
DOI: 10.1103/physrevlett.79.3829
1997
Cited 21 times
Limit on the Two-Photon Production of the Glueball Candidate<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>J</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>(</mml:mo><mml:mn>2220</mml:mn><mml:mo>)</mml:mo></mml:math>at the Cornell Electron Storage Ring
We use the CLEO detector at the Cornell ${e}^{+}{e}^{\ensuremath{-}}$ storage ring, CESR, to search for the two-photon production of the glueball candidate ${f}_{J}(2220)$ in its decay to ${K}_{s}{K}_{s}$. We present a restrictive upper limit on the product of the two-photon partial width and the ${K}_{s}{K}_{s}$ branching fraction, $({\ensuremath{\gamma}}_{\ensuremath{\gamma}\ensuremath{\gamma}}{B}_{{K}_{s}{K}_{s}}{)}_{{f}_{J(2220)}}$. We use this limit to calculate a lower limit on the stickiness, which is a measure of the two-gluon coupling relative to the two-photon coupling. This limit on stickiness indicates that the ${f}_{J}(2220)$ has substantial glueball content.
DOI: 10.1103/physrevlett.73.1890
1994
Cited 21 times
Search for Neutrinoless Decays of the Tau Lepton
A search for lepton flavor violating decays of the tau into either three charged leptons or one charged lepton and two charged hadrons was performed using 2.05 ${\mathrm{fb}}^{\ensuremath{-}1}$ of data collected by the CLEO-II experiment at the Cornell Electron Storage Ring. The upper limits obtained for 22 decay branching fractions are several times more stringent than those set previously.
DOI: 10.1103/physrevlett.84.5940
2000
Cited 20 times
Search for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">CP</mml:mi></mml:math>Violation in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">B</mml:mi></mml:mrow><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mspace /><mml:mo>→</mml:mo><mml:mspace /><mml:mi mathvariant="italic">J</mml:mi><mml:mi>/</mml:mi><mml:mi mathvariant="italic">ψ</…
We present a search for direct $\mathrm{CP}$ violation in ${B}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\rightarrow}J/\ensuremath{\psi}{K}^{\ifmmode\pm\else\textpm\fi{}}$ and ${B}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\rightarrow}\ensuremath{\psi}(2S){K}^{\ifmmode\pm\else\textpm\fi{}}$ decays. In a sample of $9.7\ifmmode\times\else\texttimes\fi{}{10}^{6}B\overline{B}$ meson pairs collected with the CLEO detector, we have fully reconstructed $534{B}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\rightarrow}J/\ensuremath{\psi}{K}^{\ifmmode\pm\else\textpm\fi{}}$ and $120{B}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\rightarrow}\ensuremath{\psi}(2S){K}^{\ifmmode\pm\else\textpm\fi{}}$ decays with very low background. We have measured the $\mathrm{CP}$-violating charge asymmetry to be $[+1.8\ifmmode\pm\else\textpm\fi{}4.3(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.4(\mathrm{syst})]%$ for ${B}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\rightarrow}J/\ensuremath{\psi}{K}^{\ifmmode\pm\else\textpm\fi{}}$ and $[+2.0\ifmmode\pm\else\textpm\fi{}9.1(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}1.0(\mathrm{syst})]%$ for ${B}^{\ifmmode\pm\else\textpm\fi{}}\ensuremath{\rightarrow}\ensuremath{\psi}(2S){K}^{\ifmmode\pm\else\textpm\fi{}}$.
DOI: 10.1103/physrevlett.79.1221
1997
Cited 20 times
Search for Neutrinoless<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math>Decays Involving<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>π</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>or<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>η</mml:mi></mml:math>Mesons
We have searched for lepton flavor violating decays of the $\ensuremath{\tau}$ lepton using final states with an electron or a muon and one or two ${\ensuremath{\pi}}^{0}$ or $\ensuremath{\eta}$ mesons but no neutrinos. The data used in the search were collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR) and correspond to an integrated luminosity of $4.68\mathrm{fb}{}^{\ensuremath{-}1}$. No evidence for signals was found, resulting in much improved limits on the branching fractions for the one-meson modes and the first upper limits for the two-meson modes.
DOI: 10.1103/physrevd.52.2656
1995
Cited 20 times
Measurement of the ratio of branching fractions<i>B</i>(<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>→<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">π</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:mrow></…
Using 3.0 ${\mathrm{fb}}^{\mathrm{\ensuremath{-}}1}$ of data collected with the CLEO-II detector, we study the Cabibbo-suppressed decay ${\mathit{D}}^{0}$\ensuremath{\rightarrow}${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$${\mathit{e}}^{+}$${\ensuremath{\nu}}_{\mathit{e}}$. The ratio of the branching fractions B(${\mathit{D}}^{0}$\ensuremath{\rightarrow}${\mathrm{\ensuremath{\pi}}}^{\mathrm{\ensuremath{-}}}$${\mathit{e}}^{+}$${\ensuremath{\nu}}_{\mathit{e}}$)/B(${\mathit{D}}^{0}$\ensuremath{\rightarrow}${\mathit{K}}^{\mathrm{\ensuremath{-}}}$${\mathit{e}}^{+}$${\ensuremath{\nu}}_{\mathit{e}}$) is measured to be (10.3\ifmmode\pm\else\textpm\fi{}3.9\ifmmode\pm\else\textpm\fi{}1.3)%, corresponding to an upper limit of 15.6% at the 90% confidence level.
DOI: 10.1088/1742-6596/125/1/012070
2008
Cited 12 times
New science on the Open Science Grid
The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement and the distributed facility. As a partner to the poster and tutorial at SciDAC 2008, this paper gives both a brief general description and some specific examples of new science enabled on the OSG. More information is available at the OSG web site: (http://www.opensciencegrid.org).
DOI: 10.1088/1742-6596/1085/3/032025
2018
Cited 9 times
A federated Xrootd cache
With the shift in the LHC experiments from the computing tiered model where data was prefetched and stored at the computing site towards a bring data on the fly, model came an opportunity. Since data is now distributed to computing jobs using XrootD federation of data, a clear opportunity for caching arose.
DOI: 10.1051/epjconf/201612700010
2016
Cited 8 times
Kalman Filter Tracking on Parallel Architectures
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.
DOI: 10.1103/physrevd.60.112002
1999
Cited 19 times
Study of 3-prong hadronic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math>decays with charged kaons
Using a sample of 4.7 ${\mathrm{fb}}^{\ensuremath{-}1}$ integrated luminosity accumulated with the CLEO-II detector at the Cornell Electron Storage Ring (CESR), we have measured the ratios of the branching fractions $\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{h}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\nu}}_{\ensuremath{\tau}})/\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{h}^{\ensuremath{-}}{h}^{+}{h}^{\ensuremath{-}}{\ensuremath{\nu}}_{\ensuremath{\tau}})=(5.16\ifmmode\pm\else\textpm\fi{}0.20\ifmmode\pm\else\textpm\fi{}0.50)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}2},$ $\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{h}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}{\ensuremath{\nu}}_{\ensuremath{\tau}})/\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{h}^{\ensuremath{-}}{h}^{+}{h}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}{\ensuremath{\nu}}_{\ensuremath{\tau}})=(2.54\ifmmode\pm\else\textpm\fi{}0.44\ifmmode\pm\else\textpm\fi{}0.39)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}2},$ $\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{K}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\nu}}_{\ensuremath{\tau}})/\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{h}^{\ensuremath{-}}{h}^{+}{h}^{\ensuremath{-}}{\ensuremath{\nu}}_{\ensuremath{\tau}})=(1.52\ifmmode\pm\else\textpm\fi{}0.14\ifmmode\pm\else\textpm\fi{}0.29)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}2}$, and the upper limit $\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{K}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}{\ensuremath{\nu}}_{\ensuremath{\tau}})/\mathcal{B}({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{h}^{\ensuremath{-}}{h}^{+}{h}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}{\ensuremath{\nu}}_{\ensuremath{\tau}})&lt;0.0154$ at 95% C.L. Coupled with additional experimental information, we use our results to extract information on the structure of three-prong tau decays to charged kaons.
DOI: 10.1103/physrevlett.76.2637
1996
Cited 18 times
Tau Decays into Three Charged Leptons and Two Neutrinos
We search for the radiative leptonic tau decays τ→ee+e−ντνe and τ→μe+e−ντνμ using 3.60fb−1 of data collected by the CLEO-II experiment at the Cornell Electron Storage Ring. We present a first observation of the τ→ee+e−ντνe process. For this channel we measure the branching fraction B(τ→ee+e−ντνe)=(2.7+1.5+0.4+0.1−1.1−0.4−0.3)×10−5. An upper limit is established for the second channel: B(τ→μe+e−ντνμ)<3.2×10−5 at 90% C.L. Both results are consistent with the rates expected from standard model predictions.Received 22 November 1995DOI:https://doi.org/10.1103/PhysRevLett.76.2637©1996 American Physical Society
DOI: 10.1103/physrevlett.86.3730
2001
Cited 18 times
Observation of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>Ω</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">c</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:math>Charmed Baryon at CLEO
The CLEO experiment at the CESR collider has used 13.7fb−1 of data to search for the production of the Ω0c (css ground state) in e+e− collisions at √s≃10.6GeV. The modes used to study the Ω0c are Ω−π+, Ω−π+π0, Ξ−K−π+π+, Ξ0K−π+, and Ω−π+π+π−. We observe a signal of 40.4±9.0(stat) events at a mass of 2694.6±2.6(stat)±1.9(syst)MeV/c2, for all modes combined.Received 11 October 2000DOI:https://doi.org/10.1103/PhysRevLett.86.3730©2001 American Physical Society
DOI: 10.1103/physrevd.59.111101
1999
Cited 18 times
Search for exclusive rare baryonic decays of<b><i>B</i></b>mesons
We report the results of a search for the rare baryonic decay modes B -> Lambda Lambdabar, B -> Lambdabar p, B -> Lambdabar p pi, and B -> p pbar using 5.8M BBbar pairs collected with the CLEO detector. We see no statistically significant signals in any of these modes and set 90% confidence level upper limits on their branching fractions, B(B -> Lambda Lambdabar) < 3.9 \times 10^{-6}, B(B -> Lambdabar p) < 2.6 \times 10^{-6}, B(B -> Lambdabar p pi) < 1.3 \times 10^{-5}, and B(B -> p pbar) < 7.0 \times 10^{-6}.
DOI: 10.1103/physrevlett.84.1393
2000
Cited 17 times
First Observation of the Decay<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">B</mml:mi><mml:mi /><mml:mo>→</mml:mo><mml:mi /><mml:mi mathvariant="italic">J</mml:mi><mml:mi>/</mml:mi><mml:mi mathvariant="italic">ψ</mml:mi><mml:mi mathvariant="italic">φ</mml:mi><mml:mi mathvariant="italic">K</mml:mi></mml:math>
We present the first observation of the decay B-->J/psistraight phiK. Using 9.6x10(6) B&Bmacr; meson pairs collected with the CLEO detector, we have observed ten fully reconstructed B-->J/psistraight phiK candidates, whereas the estimated background is 0.5+/-0.2 event. We obtain a branching fraction of B(B-->J/psistraight phiK) = (8. 8(+3.5)(-3.0)[stat]+/-1.3[syst])x10(-5). This is the first observed B meson decay requiring the creation of an additional s&smacr; quark pair.
DOI: 10.1103/physrevd.63.051101
2001
Cited 16 times
Search for a scalar bottom quark with mass 3.5–4.5<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">G</mml:mi><mml:mi mathvariant="normal">e</mml:mi><mml:mi mathvariant="normal">V</mml:mi><mml:mo>/</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>
We report on a search for a supersymmetric $\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{B}$ meson with mass between 3.5 and $4.5\mathrm{GeV}{/c}^{2}$ using $4.52{\mathrm{fb}}^{\ensuremath{-}1}$ of integrated luminosity produced at $\sqrt{s}=10.52\mathrm{GeV},$ just below the ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}B\overline{B}$ threshold, and collected with the CLEO detector. We find no evidence for a light scalar bottom quark.
DOI: 10.1016/j.nima.2003.11.075
2004
Cited 13 times
Event Builder and Level 3 at the CDF experiment
The Event Builder and Level 3 systems constitute critical components of the DAQ in the Collider Detector at Fermilab experiment. These systems are responsible for collecting data fragments from the Front End electronics, assembling the data into complete event records, reconstructing the events and forming the final trigger decision. With Tevatron Run IIa in progress, the systems have been running successfully at high throughput rates, the design utilizing scalable architecture and distributed event processing to meet the requirements. Brief descriptions of current performance in Run IIa and possible upgrade for Run IIb are presented.
DOI: 10.1088/1742-6596/664/7/072008
2015
Cited 7 times
Kalman Filter Tracking on Parallel Architectures
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.
DOI: 10.1051/epjconf/202024504041
2020
Cited 7 times
Creating a content delivery network for general science on the internet backbone using XCaches
A general problem faced by opportunistic users computing on the grid is that delivering cycles is simpler than delivering data to those cycles. In this project XRootD caches are placed on the internet backbone to create a content delivery network. Scientific workflows in the domains of high energy physics, gravitational waves, and others profit from this delivery network to increases CPU efficiency while decreasing network bandwidth use.
DOI: 10.1103/physrevlett.81.3328
1998
Cited 17 times
Further Search for the Two-Photon Production of the Glueball Candidate<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mi>J</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>(</mml:mo><mml:mn>2220</mml:mn><mml:mo>)</mml:mo></mml:math>
The CLEOII detector at the Cornell e+ e- storage ring CESR has been used to search for the two-photon production of the $f_J(2220)$ decaying into pi+ pi-. No evidence for a signal is found in data corresponding to an integrated luminosity of 4.77/fb and a 95% CL upper limit on $\Gamma_{two-photon} * BR{pi+ pi-}$ of 2.5 eV is set. If this result is combined with the BES Collaboration's measurement of $f_J(2220) -> pi+ pi-$ in radiative $J/\psi$ decay, a 95% CL lower limit on the stickiness of the $f_J(2220)$ of 73 is obtained. If the recent CLEO result for $\Gamma_{two-photon} * BR{\K_S K_S}$ is combined with the present result, the stickiness of the $f_J(2220)$ is found to be larger than 102 at the 95% CL. These results for the stickiness (the ratio of the probabilities for two-gluon coupling and two-photon coupling) provide further support for a substantial neutral parton content in the $f_J(2220)$.
DOI: 10.1103/physrevlett.78.3261
1997
Cited 17 times
Analyses of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">D</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mo>→</mml:mo><mml:mrow><mml:msubsup><mml:mrow><mml:mi mathvariant="italic">K</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">S</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msubsup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi …
Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we present new measurements of the branching fractions for ${D}^{+}\ensuremath{\rightarrow}{K}_{S}{K}^{+}$ and ${D}^{+}\ensuremath{\rightarrow}{K}_{S}{\ensuremath{\pi}}^{+}$. These results are combined with other CLEO measurements to extract the ratios of isospin amplitudes and phase shifts for $D\ensuremath{\rightarrow}\mathrm{KK}$ and $D\ensuremath{\rightarrow}K\ensuremath{\pi}$.
DOI: 10.1103/physrevd.57.5363
1998
Cited 16 times
Search for color-suppressed<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi></mml:math>hadronic decay processes at the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Υ</mml:mi><mml:mn /><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mi>S</mml:mi><mml:mo>)</mml:mo><mml:mn /></mml:math>resonance
Using $3.1{\mathrm{fb}}^{\mathrm{\ensuremath{-}}1}$ of data accumulated at the $\ensuremath{\Upsilon}(4S)$ by the CLEO-II detector, corresponding to $3.3\ifmmode\times\else\texttimes\fi{}{10}^{6}$ $B\overline{B}$ pairs, we have searched for the color-suppressed $B$ hadronic decay processes ${B}^{0}\ensuremath{\rightarrow}{D}^{0}{(D}^{*0}){\mathrm{X}}^{0},$ where ${\mathrm{X}}^{0}$ is a light neutral meson ${\ensuremath{\pi}}^{0},$ ${\ensuremath{\rho}}^{0},$ \ensuremath{\eta}, ${\ensuremath{\eta}}^{\ensuremath{'}}$ or \ensuremath{\omega}. The ${D}^{*0}$ mesons are reconstructed in ${D}^{*0}\ensuremath{\rightarrow}{D}^{0}{\ensuremath{\pi}}^{0}$ and the ${D}^{0}$ mesons in ${D}^{0}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{\ensuremath{\pi}}^{+},$ ${K}^{\ensuremath{-}}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}$ and ${K}^{\ensuremath{-}}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$ decay modes. No obvious signal is observed. We set 90% C.L. upper limits on these modes, varying from $1.2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ for ${B}^{0}\ensuremath{\rightarrow}{D}^{0}{\ensuremath{\pi}}^{0}$ to $1.9\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$ for ${B}^{0}\ensuremath{\rightarrow}{D}^{*0}{\ensuremath{\eta}}^{\ensuremath{'}}.$
DOI: 10.1016/0370-2693(93)90827-5
1993
Cited 16 times
Search for exclusive b → u transitions in hadronic decays of B mesons involving mesons
Using 1.16 × 106 BB events collected at the γ(4S) resonance by the CLEO Collaboration at the Cornell Electron Storage Ring (CESR), we have searched for decays of B mesons to exclusive two-body hadronic final states including a Ds+ or a Ds∗+ meson. We obtain the 90% confidence level upper limit β (B → Ds(∗)+π−+ Ds∗+p−+ Ds(∗)+π0+ Ds(∗)+η + Ds(∗)+p0+ Ds(∗)+(ω) × β(Ds+→ φπ+) < 1.8 × 10−5. We have also searched for the W-exchange decays, B0→ Ds(∗)−K(∗)+.
DOI: 10.1103/physrevd.53.4734
1996
Cited 16 times
Measurements of B→<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">s</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math>X decays
This paper describes new measurements from CLEO of the inclusive B→D s ϩ X branching fraction as well as the B ϩ →D s ( * )ϩ D ¯(* )0 and B 0 →D s ( * )ϩ D ( * )Ϫ branching fractions.The inclusive branching fraction is B(B→D s ϩ X)ϭ(12.11Ϯ0.39Ϯ0.88Ϯ1.38)%where the first error is statistical, the second is the systematic error, and the third is the error due to the uncertainty in the D s ϩ → ϩ branching fraction.The branching fractions for the B→D s ( * )ϩ D ¯(* ) modes are found to be between 0.9% and 2.4% and are significantly more precise than previous measurements.The sum of the B→D s ( * )ϩ D ¯(* ) branching fractions is consistent with the results of fits to the inclusive D s ϩ momentum spectrum.Factorization is used to arrive at a value for f D s , the D s ϩ decay constant.
DOI: 10.1103/physrevlett.82.286
1999
Cited 16 times
First Observations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">ϒ</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mi mathvariant="italic">S</mml:mi><mml:mo>)</mml:mo><mml:mi /><mml:mo>→</mml:mo><mml:mi /><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">γ</mml:mi><mml:mi mathvariant="italic">π</mml:mi></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="…
We report on a study of exclusive radiative decays of the $\ensuremath{\Upsilon}(1S)$ resonance collected with the CLEO II detector operating at the Cornell Electron Storage Ring. We present the first observation of the radiative decays $\ensuremath{\Upsilon}(1S)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$ and $\ensuremath{\Upsilon}(1S)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\pi}}^{0}{\ensuremath{\pi}}^{0}$. For the dipion mass regime ${m}_{\ensuremath{\pi}\ensuremath{\pi}}&gt;1.0\phantom{\rule{0ex}{0ex}}\mathrm{GeV}$, we obtain $B(\ensuremath{\Upsilon}(1S)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}(6.3\ifmmode\pm\else\textpm\fi{}1.2\ifmmode\pm\else\textpm\fi{}1.3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ and $B(\ensuremath{\Upsilon}(1S)\ensuremath{\rightarrow}\ensuremath{\gamma}{\ensuremath{\pi}}^{0}{\ensuremath{\pi}}^{0})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}(1.7\ifmmode\pm\else\textpm\fi{}0.6\ifmmode\pm\else\textpm\fi{}0.3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$.
DOI: 10.1088/1742-6596/119/5/052028
2008
Cited 9 times
The Open Science Grid status and architecture
The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. The OSG project[1] is funded by the National Science Foundation and the Department of Energy Scientific Discovery through Advanced Computing program. The OSG project provides specific activities for the operation and evolution of the common infrastructure. The US ATLAS and US CMS collaborations contribute to and depend on OSG as the US infrastructure contributing to the World Wide LHC Computing Grid on which the LHC experiments distribute and analyze their data. Other stakeholders include the STAR RHIC experiment, the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Dark Energy Survey (DES) and several Fermilab Tevatron experiments- CDF, D0, MiniBoone etc. The OSG implementation architecture brings a pragmatic approach to enabling vertically integrated community specific distributed systems over a common horizontal set of shared resources and services. More information can be found at the OSG web site: www.opensciencegrid.org.
DOI: 10.1088/1742-6596/219/7/072013
2010
Cited 7 times
Use of glide-ins in CMS for production and analysis
With the evolution of various grid federations, the Condor glide-ins represent a key feature in providing a homogeneous pool of resources using late-binding technology. The CMS collaboration uses the glide-in based Workload Management System, glideinWMS, for production (ProdAgent) and distributed analysis (CRAB) of the data. The Condor glide-in daemons traverse to the worker nodes, submitted via Condor-G. Once activated, they preserve the Master-Worker relationships, with the worker first validating the execution environment on the worker node before pulling the jobs sequentially until the expiry of their lifetimes. The combination of late-binding and validation significantly reduces the overall failure rate visible to CMS physicists. We discuss the extensive use of the glideinWMS since the computing challenge, CCRC-08, in order to prepare for the forthcoming LHC data-taking period. The key features essential to the success of large-scale production and analysis on CMS resources across major grid federations, including EGEE, OSG and NorduGrid are outlined. Use of glide-ins via the CRAB server mechanism and ProdAgent, as well as first hand experience of using the next generation CREAM computing element within the CMS framework is discussed.
DOI: 10.1051/epjconf/201715000006
2017
Cited 6 times
Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs
For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem in the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offline. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port Kalman filter to NVIDIA GPUs.
DOI: 10.1145/3526064.3534110
2022
Cited 3 times
Access Trends of In-network Cache for Scientific Data
Scientific collaborations are increasingly relying on large volumes of data for their work and many of them employ tiered systems to replicate the data to their worldwide user communities. Each user in the community often selects a different subset of data for their analysis tasks; however, members of a research group often are working on related research topics that require similar data objects. Thus, there is a significant amount of data sharing possible. In this work, we study the access traces of a federated storage cache known as the Southern California Petabyte Scale Cache. By studying the access patterns and potential for network traffic reduction by this caching system, we aim to explore the predictability of the cache uses and the potential for a more general in-network data caching. Our study shows that this distributed storage cache is able to reduce the network traffic volume by a factor of 2.35 during a part of the study period. We further show that machine learning models could predict cache utilization with an accuracy of 0.88. This demonstrates that such cache usage is predictable, which could be useful for managing complex networking resources such as in-network caching.
DOI: 10.1103/physrevd.47.r3671
1993
Cited 14 times
Measurement of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math>-lepton mass
Using data from the CLEO II detector at CESR, we measure the τ-lepton mass by exploiting the unique kinematics of events in which both τ's decay hadronically. The result is mτ=1777.8±0.7±1.7 MeV/c2. By comparing our result with other measurements near τ-pair threshold, we extract an upper limit on the τ-neutrino mass of 75 MeV/c2 at 95% confidence level.Received 9 February 1993DOI:https://doi.org/10.1103/PhysRevD.47.R3671©1993 American Physical Society