ϟ

F. Primavera

Here are all the papers by F. Primavera that you can download and read on OA.mg.
F. Primavera’s last known institution is . Download F. Primavera PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/11/08/p08019
2016
Cited 24 times
Eco-friendly gas mixtures for Resistive Plate Chambers based on tetrafluoropropene and Helium
Due to the recent restrictions deriving from the application of the Kyoto protocol, the main components of the gas mixtures presently used in the Resistive Plate Chambers systems of the LHC experiments will be most probably phased out of production in the coming years. Identifying possible replacements with the adequate characteristics requires an intense R&D, which was recently started, also in collaborations across the various experiments. Possible candidates have been proposed and are thoroughly investigated. Some tests on one of the most promising candidate - HFO-1234ze, an allotropic form of tetrafluoropropane- have already been reported. Here an innovative approach, based on the use of Helium, to solve the problems related to the too elevate operating voltage of HFO-1234ze based gas mixtures, is discussed and the relative first results are shown.
DOI: 10.1088/1748-0221/11/09/c09018
2016
Cited 10 times
Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment
The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.
DOI: 10.3938/jkps.73.1080
2018
Cited 8 times
Study of Thin Double-Gap RPCs for the CMS Muon System
DOI: 10.1088/1748-0221/14/11/c11012
2019
Cited 7 times
The CMS RPC detector performance and stability during LHC RUN-2
The CMS experiment, located at the Large Hadron Collider (LHC) in CERN, has a redundant muon system composed by three different gaseous detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region), and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. The CMS RPC system confers robustness and redundancy to the muon trigger. The RPC system operation in the challenging background and pileup conditions of the LHC environment is presented. The RPC system provides information to all muon track finders and thus contributing to both muon trigger and reconstruction. The summary of the detector performance results obtained with proton-proton collision at √s = 13 TeV during 2016 and 2017 data taking have been presented. The stability of the system is presented in terms of efficiency and cluster size vs time and increasing instantaneous luminosity. Data-driven predictions about the expected performance during High Luminosity LHC (HL-LHC) stage have been reported.
DOI: 10.1088/1748-0221/11/09/c09006
2016
Cited 5 times
High rate, fast timing Glass RPC for the high η CMS muon detectors
The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm−2s−1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.
DOI: 10.1088/1748-0221/11/08/c08008
2016
Cited 5 times
Radiation tests of real-sized prototype RPCs for the Phase-2 Upgrade of the CMS Muon System
We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for the Phase-2 upgrade of the CMS muon system at high η. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs with cosmic rays and with 100-GeV muons provided by the SPS H4 beam line at CERN. To examine the rate capability of the prototype RPCs both at Korea University and at the CERN GIF++ facility, the chambers were irradiated with 137Cs sources providing maximum gamma rates of about 1.5 kHz cm−2. For the 1.6-mm-thick double-gap RPCs, we found the relatively high threshold on the produced detector charge was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II runs of the Large Hadron Collider (LHC).
DOI: 10.1088/1748-0221/13/08/p08024
2018
Cited 4 times
Long-term performance and longevity studies of the CMS Resistive Plate Chambers
Four double-gap CMS resistive plate chambers are being tested at the CERN Gamma Irradiation Facility to determine the performance and aging effects at the expected conditions of the High Luminosity-Large Hadron Collider. Results up to an integrated charge of 290 millicoulomb/cm2 are reported.
DOI: 10.1088/1748-0221/11/09/c09017
2016
Cited 3 times
R&D towards the CMS RPC Phase-2 upgrade
The high pseudo-rapidity region of the CMS muon system is covered by Cathode Strip Chambers (CSC) only and lacks redundant coverage despite the fact that it is a challenging region for muons in terms of backgrounds and momentum resolution. In order to maintain good efficiency for the muon trigger in this region additional RPCs are planned to be installed in the two outermost stations at low angle named RE3/1 and RE4/1. These stations will use RPCs with finer granularity and good timing resolution to mitigate background effects and to increase the redundancy of the system.
DOI: 10.1088/1748-0221/13/09/c09001
2018
Cited 3 times
Fast timing measurement for CMS RPC Phase-II upgrade
With the increase of the LHC luminosity foreseen in the coming years, many detectors currently used in the different LHC experiments will be dramatically impacted and some need to be replaced or upgraded. The new ones should be capable to provide time information to reduce the data ambiguity due to the expected high pileup. We propose to equip CMS high |η| muon chambers with pairs of single gap RPC detectors read out by long pickup strips PCB. The precise time measurement (0<15 ps) of the signal induced by particles crossing the detector on both ends of each strip will give an accurate measurement of the position of the incoming particle along the strip. The absolute time measurement, determined by RPC signal (around 1.5 ns) will also reduce the data ambiguity due to the highly expected pileup and help to identify Heavy Stable Charged Particles (HSCP). The development of a specific electronic chain (analog front-end ASIC, time-to-digital converter stage and printed circuit board design) and the corresponding first results on prototype chambers are presented.
DOI: 10.1088/1748-0221/14/09/c09045
2019
Cited 3 times
RPC radiation background simulations for the high luminosity phase in the CMS experiment
The high luminosity expected from the HL-LHC will be a challenge for the CMS detector. The increased rate of particles coming from the collisions and the radioactivity induced in the detector material could cause significant damage and result in a progressive degradation of its performance. Simulation studies are very useful in these scenarios as they allow one to study the radiation environment and the impact on detector performance. Results are presented for CMS RPC stations considering the operating conditions expected at the HL-LHC.
DOI: 10.1088/1748-0221/14/10/c10042
2019
R&D of a real-size mosaic MRPC within the framework of the CMS muon upgrade
Based on previous experience and attempt, a real-size mosaic Multi-gap Resistive Plate Chamber (MRPC) has been developed within the framework of the CMS muon upgrade efforts. The chamber is a 5-gap with plates made each of 6 pieces of low resistive glass. Cosmic ray test at CERN 904 shows that its efficiency can reach above 95% with a gas mixture of 90% C2H2F4, 5% i-C4H10 and 5% SF6. The chamber was also tested with CMS dry gas(95.2% C2H2F4, 4.5% i-C4H10, 0.3% SF6) at the CERN Gamma Irradiation Facility (GIF++). Efficiency results calculated by a simple tracking method show that the good performance is maintained at rates up to 10 kHz/cm2.
DOI: 10.1088/1748-0221/14/10/c10027
2019
RE3/1 &amp; RE4/1 RPC chambers integration in the inner region of the forward muon spectrometer in the CMS experiment
The high pseudorapidity ($\eta$) region of the Compact Muon Solenoid (CMS) muon system is covered by Cathode Strip Chambers only and lacks redundant coverage despite the fact that it is a challenging region for muons in terms of backgrounds and momentum resolution. During the annual Year-End Technical Stops 2022 & 2023, two new layers of improved Resistive Plate Chambers (iRPC) will be added, RE3/1 & RE4/1, which will completely cover the region of $1.8 < |\eta| < 2.4$ in the endcap. Thus, the additional new chambers will lead to increase efficiency for both trigger and offline reconstruction in the difficult region where the background is the highest and the magnetic field is the lowest within the muon system. The extended RPC system will improve the performance and the robustness of the muon trigger. The final design of iRPC chambers and the concept to integrate and install them in the CMS muon system have been finalized. In this report, the main results demonstrating the implementation and installation of the new iRPC detectors in the CMS muon system at high $|\eta|$ region will be presented.
DOI: 10.1051/epjconf/201817403005
2018
Characterization of the water diffusion in GEM foil material
Systematic studies on the GEM foil material are performed to measure the moisture diffusion rate and saturation level. These studies are important because the presence of this compound inside the detector’ s foil can possibly change its mechanical and electrical properties, and in such a way, the detector performance can be affected. To understand this phenomenon, a model is developed with COMSOL Multiphysics v. 4.3 [1], which described the adsorption and diffusion within the geometry of GEM foil, the concentration profiles and the time required to saturate the foil. The COMSOL model is verified by experimental observations on a GEM foil sample. This note will describe the model and its experimental verification results.
DOI: 10.1088/1748-0221/14/05/c05012
2019
Longevity studies on the CMS-RPC system
In the next decades, the Large Hadron Collider (LHC) will run at very high luminosity (HL-LHC) 5×1034 cm−2s−1, factor five more than the nominal LHC luminosity. During this period the CMS RPC system will be subjected to high background rates which could affect the performance by inducing aging effects. A dedicated longevity program to qualify the present RPC system for the HL-LHC running period is ongoing. At the CERN Gamma Irradiation Facility (GIF++) four RPC detectors, from the spare production, are exposed to an intense gamma radiation for a dose equivalent to the one expected at the HL-LHC . The main detector parameters are under monitoring as a function of the integrated charge and the performance is studied with a muon beam. Preliminary results of the study after having collected ≈ 34% of the expected integrated charge will be presented.
DOI: 10.1088/1748-0221/14/09/c09046
2019
High voltage calibration method for the CMS RPC detector
The Resistive Plate Chambers (RPC) are used for muon triggers in the CMS experiment. To calibrate the high voltage working-points (WP) and identify degraded detectors due to radiation or chemical damage, a high voltage scan has been performed using 2017 data from pp collisions at a center-of-mass energy of 13 TeV. In this paper, we present the calibration method and the latest results obtained for the 2017 data. A comparison with all scans taken since 2011 is considered to investigate the stability of the detector performance in time.
DOI: 10.1088/1748-0221/15/05/c05072
2020
RPC upgrade project for CMS Phase II
The Muon Upgrade Phase II of the Compact Muon Solenoid (CMS) aims to guarantee the optimal conditions of the present system and extend the η coverage to ensure a reliable system for the High Luminosity Large Hadron Collider (HL-LHC) period. The Resistive Plate Chambers (RPCs) system will upgrade the off-detector electronics (called link system) of the chambers currently installed chambers and place improved RPCs (iRPCs) to cover the high pseudo−rapidity region, a challenging region for muon reconstruction in terms of background and momentum resolution. In order to find the best option for the iRPCs, an R&D program for new detectors was performed and real size prototypes have been tested in the Gamma Irradiation Facility (GIF++) at CERN. The results indicated that the technology suitable for the high background conditions is based on High Pressure Laminate (HPL) double-gap RPC. The RPC Upgrade Phase II program is planned to be ready after the Long Shutdown 3 (LS3).
DOI: 10.1080/11263509609439649
1996
Cited 3 times
Relazione Tra Tessitura del Suolo e Coltivazione del Noce da Legno
DOI: 10.48550/arxiv.1512.08621
2015
Characterization of the GEM foil materials
Systematic studies on the GEM foil material are performed to measure the moisture diffusion rate and saturation level. These studies are important because the presence of this compound inside the detector's foil can possibly change its mechanical and electrical properties and, in such a way, the detector performance can be affected. To understand this phenomenon, a model is developed with COMSOL Multhiphysics v. 4.3, which described the adsorption and diffusion within the geometry of GEM foil, the concentration profiles and the time required to saturate the foil. The COMSOL model is verified by experimental observations on a GEM foil sample. This note will describe the model and its experimental verification results.
DOI: 10.48550/arxiv.1512.08542
2015
Candidate eco-friendly gas mixtures for MPGDs
Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.
DOI: 10.48550/arxiv.1605.06798
2016
Performance of Resistive Plate Chambers installed during the first long shutdown of the CMS experiment
The CMS experiment, located at the CERN Large Hadron Collider, has a redundant muon system composed by three different detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region) and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. During the first long shutdown (LS1) of the LHC (2013-2014) the CMS muon system has been upgraded with 144 newly installed RPCs on the forth forward stations. The new chambers ensure and enhance the muon trigger efficiency in the high luminosity conditions of the LHC Run2. The chambers have been successfully installed and commissioned. The system has been run successfully and experimental data has been collected and analyzed. The performance results of the newly installed RPCs will be presented.
2016
Performance of Resistive Plate Chambers installed during the first long shutdown of the CMS experiment
The CMS experiment, located at the CERN Large Hadron Collider, has a redundant muon system composed by three different detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region) and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. During the first long shutdown (LS1) of the LHC (2013-2014) the CMS muon system has been upgraded with 144 newly installed RPCs on the forth forward stations. The new chambers ensure and enhance the muon trigger efficiency in the high luminosity conditions of the LHC Run2. The chambers have been successfully installed and commissioned. The system has been run successfully and experimental data has been collected and analyzed. The performance results of the newly installed RPCs will be presented.
DOI: 10.1088/1748-0221/11/10/c10013
2016
Detector control system and efficiency performance for CMS RPC at GIF++
In the framework of the High Luminosity LHC upgrade program, the CMS muon group built several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System (DCS) has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data. Preliminary efficiency studies that set the base performance measurements of CMS RPC for starting aging studies are also presented.
DOI: 10.48550/arxiv.1605.00440
2016
Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope
We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for future high-η RPC triggers in the CMS. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs for cosmic rays and 100 GeV muons provided by the SPS H4 beam line at CERN. We applied maximum gamma rates of 1.5 kHz cm-2 provided by 137Cs sources at Korea University and the GIF++ irradiation facility installed at the SPS H4 beam line to examine the rate capabilities of the prototype RPCs. In contrast to the case of the four-gap RPCs, we found the relatively high threshold was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II LHC runs.
DOI: 10.6092/unibo/amsdottorato/6215
2014
Search for the MSSM Neutral Higgs Boson in the $\mu^{+}\mu^{-}$ final state with the CMS experiment at LHC
In this thesis, my work in the Compact Muon Solenoid (CMS) experiment on the search for the neutral Minimal Supersymmetric Standard Model (MSSM) Higgs decaying into two muons is presented. The search is performed on the full data collected during the years 2011 and 2012 by CMS in proton-proton collisions at CERN Large Hadron Collider (LHC). The MSSM is explored within the most conservative benchmark scenario, m_h^{max}, and within its modified versions, m_h^{mod +} and m_h^{mod -}. The search is sensitive to MSSM Higgs boson production in association with a b\bar{b} quark pair and to the gluon-gluon fusion process. In the m_h^{max} scenario, the results exclude values of tanB larger than 15 in the m_A range 115-200 GeV, and values of tanB greater than 30 in the m_A range up to 300 GeV. There are no significant differences in the results obtained within the three different scenarios considered. Comparisons with other neutral MSSM Higgs searches are shown.
DOI: 10.1051/epjconf/20136012016
2013
Searches for exotic and rare higgs decays in CMS
The results on searches for Higgs-like particles beyond the Standard Model and rare Standard Model Higgs decays are presented. Searches are performed using the data collected by CMS experiment in proton-proton collision at LHC. Most recent results concerning light Higgses as predicted in the MSSM, NMSSM and fermiophobic models are discussed. Decays of the 125 GeV Higgs-like particle to Zγ channel is also presented.
DOI: 10.22323/1.186.0035
2013
Search for MSSM Higgs with the CMS detector at LHC
2012
Search for MSSM Higgs with the CMS detector at LHC
DOI: 10.22323/1.414.0640
2022
Longevity studies for the CMS Muon System towards HL-LHC
The High Luminosity LHC program will pose a great challenge for the different components of the CMS Muon Detector.Existing systems, which consist of Drift Tubes, Resistive Plate Chambers (RPC) and Cathode Strip Chambers (CSC), will have to operate at 5 times higher instantaneous luminosity than the designed for, and, consequently, will have to sustain about 10 times the expected LHC integrated luminosity.Additionally, to cope with the high rate environment maintaining a good performance, additional Gas Electron Multiplier and improved RPC detectors will be installed in the innermost region of the forward muon spectrometer of the CMS experiment.The design of these new detectors will have to assure their long-time operation in a hard environment.Finally, RPC and CSC use gases with a global warming potential and therefore a search for new eco-friendly gases is necessary, as part of the CERN-wide program.To address all of these challenges a series of accelerated irradiation studies have been performed for all the muons systems, mainly at the CERN Gamma Irradiation Facility, or with specific X-ray sources.In this summary the status of the studies on the longevity of the different systems of the CMS Muon Detector, after the large integrated charge in the last years, will be reported.Additionally, actions taken to reduce the actual detector aging and to minimize greenhouse gas consumption will be discussed.
2018
RPC upgrade project for CMS Phase II : arXiv
DOI: 10.1088/1748-0221/14/10/c10020
2019
CMS RPC efficiency measurement using the tag-and-probe method
We measure the efficiency of CMS Resistive Plate Chamber (RPC) detectors in proton-proton collisions at the centre-of-mass energy of 13 TeV using the tag-and-probe method. A muon from a Z0 boson decay is selected as a probe of efficiency measurement, reconstructed using the CMS inner tracker and the rest of CMS muon systems. The overall efficiency of CMS RPC chambers during the 2016–2017 collision runs is measured to be more than 96% for the nominal RPC chambers.
DOI: 10.1088/1748-0221/14/11/c11011
2019
Search for Heavy Stable Charged Particles in the CMS Experiment using the RPC Phase II upgraded detectors
Several theoretical models inspired by the idea of supersymmetry (SUSY) accommodate the possibility of Heavy Stable Charged Particles (HSCPs). The Phase II upgrade of the CMS-RPC system will allow the trigger and identification of this kind of particles exploiting the Time-of-Flight Technique with the improved time resolution that a new Data Acquisition System (DAQ) system will provide (∼2 ns). Moreover, new Resistive Plate Chambers (RPC) detector chambers will be installed to extend the acceptance coverage up to |η|<2.4 with similar time resolution and better spatial resolution. We present a trigger strategy to detect HSCPs with the RPC detectors. Its performance is studied with Monte Carlo simulations and the expected results with the High Luminosity Large Hadron Collider (HL-LHC) data are shown.
DOI: 10.1088/1748-0221/14/10/c10037
2019
High Rate RPC detector for LHC
The High Luminosity LHC (HL-LHC) phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. The foreseen gradual increase of the instantaneous luminosity of up to more than twice its nominal value of $10\times10^{34}\ {\rm cm}^{-1}{\rm s}^{-2}$ during Phase I and Phase II of the LHC running, presents special challenges for the experiments. The region with high pseudo rapidity ($\eta$) region of the forward muon spectrometer ($2.4 > |\eta| > 1.9$) is not equipped with RPC stations. The increase of the expected particles rate up to 2 kHz cm$^{-1}$ ( including a safety factor 3 ) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. A new generation of Glass-RPC (GRPC) using low-resistivity glass was proposed to equip the two most far away of the four high $\eta$ muon stations of CMS. In their single-gap version they can stand rates of few kHz cm$^{-1}$. Their time precision of about 1 ns can allow to reduce the noise contribution leading to an improvement of the trigger rate. The proposed design for large size chambers is examined and some preliminary results obtained during beam tests at Gamma Irradiation Facility (GIF++) and Super Proton Synchrotron (SPS) at CERN are shown. They were performed to validate the capability of such detectors to support high irradiation environment with limited consequence on their efficiency.
2021
CMS High Level Trigger performance in Run 2 and new developments for Run 3