ϟ

Finn Feindt

Here are all the papers by Finn Feindt that you can download and read on OA.mg.
Finn Feindt’s last known institution is . Download Finn Feindt PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/19/01/p01020
2024
Monolithic MHz-frame rate digital SiPM-IC with sub-100 ps precision and 70 μm pixel pitch
Abstract This paper presents the design and characterization of a monolithic integrated circuit (IC) including digital silicon photomultipliers (dSiPMs) arranged in a 32 × 32 pixel matrix at 70 μm pitch. The IC provides per-quadrant time stamping and hit-map readout, and is fabricated in a standard 150-nm CMOS technology. Each dSiPM pixel consists of four single-photon avalanche diodes (SPADs) sharing a quenching and subsequent processing circuitry and has a fill factor of 30 %. A sub-100 ps precision, 12-bit time-to-digital converter (TDC) provides timestamps per quadrant with an acquisition rate of 3 MHz. Together with the hit map, the total sustained data throughput of the IC amounts to 4 Gbps. Measurements obtained in a dark, temperature-stable environment as well as by using a pulsed laser environment show the full dSiPM-IC functionality. The dark-count rate (DCR) as function of the overvoltage and temperature, the TDC resolution, differential and integral nonlinearity (DNL/INL) as well as the propagation delays across the matrix are presented. With aid of additional peripheral test structures, the main building blocks are characterized and key parameters are presented.
DOI: 10.48550/arxiv.2402.12305
2024
A Digital Silicon Photomultiplier
Silicon Photomultipliers (SiPMs) are state-of-the-art photon detectors used in particle physics, medical imaging, and beyond. They are sensitive to individual photons in the optical wavelength regime and achieve time resolutions of a few tens of picoseconds, which makes them interesting candidates for timing detectors in tracking systems for particle physics experiments. The Geiger discharges triggered in the sensitive elements of a SiPM, Single-Photon Avalanche Diodes (SPADs), yield signal amplitudes independent of the energy deposited by a photon or ionizing particle. This intrinsically digital nature of the signal motivates its digitization already on SPAD level. A digital SiPM (dSiPM) was designed at Deutsches Elektronen Synchrotron (DESY), combining a SPAD array with embedded CMOS circuitry for on-chip signal processing. A key feature of the DESY dSiPM is its capability to provide hit-position information on pixel level, and one hit time stamp per quadrant at a 3 MHz readout-frame rate. The pixels comprise four SPADs and have a pitch of about 70 um. The four time stamps are provided by 12 bit Time-to-Digital Converters (TDCs) with a resolution better than 100 ps. The chip was characterized in the laboratory to determine dark count rate, breakdown voltage, and TDC characteristics. Test-beam measurements are analyzed to assess the DESY dSiPMs performance in the context of a 4D-tracking applications. The results demonstrate a spatial hit resolution on a pixel level, a minimum-ionizing particle detection efficiency of about 30 % and a time resolution in the order of 50 ps.
DOI: 10.48550/arxiv.2402.14524
2024
Simulations and Performance Studies of a MAPS in 65 nm CMOS Imaging Technology
Monolithic active pixel sensors (MAPS) produced in a 65 nm CMOS imaging technology are being investigated for applications in particle physics. The MAPS design has a small collection electrode characterized by an input capacitance of ~fF, granting a high signal-to-noise ratio and low power consumption. Additionally, the 65 nm CMOS imaging technology brings a reduction in material budget and improved logic density of the readout circuitry, compared to previously studied technologies. Given these features, this technology was chosen by the TANGERINE project to develop the next generation of silicon pixel sensors. The sensor design targets temporal and spatial resolutions compatible with the requirements for a vertex detector at future lepton colliders. Simulations and test-beam characterization of technology demonstrators have been carried out in close collaboration with the CERN EP R&D program and the ALICE ITS3 upgrade. TCAD device simulations using generic doping profiles and Monte Carlo simulations have been used to build an understanding of the technology and predict the performance parameters of the sensor. Technology demonstrators of a 65 nm CMOS MAPS with a small collection electrode have been characterized in laboratory and test-beam facilities by studying performance parameters such as cluster size, charge collection, and efficiency. This work compares simulation results to test-beam data. The experimental results establish this technology as a promising candidate for a vertex detector at future lepton colliders and give valuable information for improving the simulation approach.
DOI: 10.48550/arxiv.2403.08952
2024
Characterisation of analogue Monolithic Active Pixel Sensor test structures implemented in a 65 nm CMOS imaging process
Analogue test structures were fabricated using the Tower Partners Semiconductor Co. CMOS 65 nm ISC process. The purpose was to characterise and qualify this process and to optimise the sensor for the next generation of Monolithic Active Pixels Sensors for high-energy physics. The technology was explored in several variants which differed by: doping levels, pixel geometries and pixel pitches (10-25 $\mu$m). These variants have been tested following exposure to varying levels of irradiation up to 3 MGy and $10^{16}$ 1 MeV n$_\text{eq}$ cm$^{-2}$. Here the results from prototypes that feature direct analogue output of a 4$\times$4 pixel matrix are reported, allowing the systematic and detailed study of charge collection properties. Measurements were taken both using $^{55}$Fe X-ray sources and in beam tests using minimum ionizing particles. The results not only demonstrate the feasibility of using this technology for particle detection but also serve as a reference for future applications and optimisations.
DOI: 10.1016/j.nima.2024.169321
2024
The DESY digital silicon photomultiplier: Device characteristics and first test-beam results
Silicon Photomultipliers (SiPMs) are state-of-the-art photon detectors used in particle physics, medical imaging, and beyond. They are sensitive to individual photons in the optical wavelength regime and achieve time resolutions of a few tens of picoseconds, which makes them interesting candidates for timing detectors in tracking systems for particle physics experiments. The Geiger discharges triggered in the sensitive elements of a SiPM, Single-Photon Avalanche Diodes (SPADs), yield signal amplitudes independent of the energy deposited by a photon or ionizing particle. This intrinsically digital nature of the signal motivates its digitization already on SPAD level. A digital SiPM (dSiPM) was designed at Deutsches Elektronen Synchrotron (DESY), combining a SPAD array with embedded CMOS circuitry for on-chip signal processing. A key feature of the DESY dSiPM is its capability to provide hit-position information on pixel level, and one hit time stamp per quadrant at a 3 MHz readout-frame rate. The pixels comprise four SPADs and have a pitch of about 70 μm. The four time stamps are provided by 12 bit Time-to-Digital Converters (TDCs) with a resolution better than 100 ps. The chip was characterized in the laboratory to determine dark count rate, breakdown voltage, and TDC characteristics. Test-beam measurements are analyzed to assess the DESY dSiPMs performance in the context of a 4D-tracking applications. The results demonstrate a spatial hit resolution on a pixel level, a minimum-ionizing particle detection efficiency of about 30 % and a time resolution in the order of 50 ps.
DOI: 10.1016/j.nima.2024.169414
2024
Simulations and performance studies of a MAPS in 65 nm CMOS imaging technology
Monolithic active pixel sensors (MAPS) produced in a 65 nm CMOS imaging technology are being investigated for applications in particle physics. The MAPS design has a small collection electrode characterized by an input capacitance of ∼fF, granting a high signal-to-noise ratio and low power consumption. Additionally, the 65 nm CMOS imaging technology brings a reduction in material budget and improved logic density of the readout circuitry, compared to previously studied technologies. Given these features, this technology was chosen by the TANGERINE project to develop the next generation of silicon pixel sensors. The sensor design targets temporal and spatial resolutions compatible with the requirements for a vertex detector at future lepton colliders. Simulations and test-beam characterization of technology demonstrators have been carried out in close collaboration with the CERN EP R&D program and the ALICE ITS3 upgrade. TCAD device simulations using generic doping profiles and Monte Carlo simulations have been used to build an understanding of the technology and predict the performance parameters of the sensor. Technology demonstrators of a 65 nm CMOS MAPS with a small collection electrode have been characterized in laboratory and test-beam facilities by studying performance parameters such as cluster size, charge collection, and efficiency. This work compares simulation results to test-beam data. The experimental results establish this technology as a promising candidate for a vertex detector at future lepton colliders and give valuable information for improving the simulation approach.
DOI: 10.1016/j.nima.2022.167821
2023
Towards a new generation of Monolithic Active Pixel Sensors
A new generation of Monolithic Active Pixel Sensors (MAPS), produced in a 65 nm CMOS imaging process, promises higher densities of on-chip circuits and, for a given pixel size, more sophisticated in-pixel logic compared to larger feature size processes. MAPS are a cost-effective alternative to hybrid pixel sensors since flip-chip bonding is not required. In addition, they allow for significant reductions of the material budget of detector systems, due to the smaller physical thicknesses of the active sensor and the absence of a separate readout chip. The TANGERINE project develops a sensor suitable for future Higgs factories as well as for a beam telescope to be used at beam-test facilities. The sensors will have small collection electrodes (order of $\mu$m) to maximize the signal-to-noise ratio, which makes it possible to minimize power dissipation in the circuitry. The first batch of test chips, featuring full front-end amplifiers with Krummenacher feedback, was produced and tested at the Mainzer Mikrotron (MAMI) at the end of 2021. MAMI provides an electron beam with currents up to 100 $\mu$A and an energy of 855 MeV. The analog output signal of the test chips was recorded with a high bandwidth oscilloscope and used to study the charge-sensitive amplifier of the chips in terms of waveform analysis. A beam telescope was used as a reference system to allow for track-based analysis of the recorded data.
DOI: 10.1016/j.nima.2020.163955
2020
Cited 7 times
Influence of radiation damage on the absorption of near-infrared light in silicon
The absorption length, $\lambda_{abs}$, of light with wavelengths between 0.95 and 1.30$~\mu$m in silicon irradiated with 24$~$GeV/c protons to 1$~$MeV neutron equivalent fluences between 0 and $8.6 \times 10^{15}~$cm$^{-2}$ has been measured. It is found that $\lambda_{abs}$ decreases with fluence due to radiation-induced defects. A phenomenological parametrisation of the radiation-induced change of $\lambda_{abs}$ as a function of wavelength and neutron equivalent fluence at room temperature is given. The observation of the decrease of $\lambda_{abs}$ with irradiation is confirmed by edge-TCT measurements on irradiated silicon strip detectors. Using the measured wavelength dependence of $\lambda_{abs}$, the change of the silicon band-gap with fluence is determined.
DOI: 10.1016/j.nima.2022.167025
2022
Cited 3 times
The Tangerine project: Development of high-resolution 65 nm silicon MAPS
The Tangerine project aims to develop new state-of-the-art high-precision silicon detectors. Part of the project has the goal of developing a monolithic active pixel sensor using a novel 65 nm CMOS imaging process, with a small collection electrode. This is the first application of this process in particle physics, and it is of great interest as it allows for an increased logic density and reduced power consumption and material budget compared to other processes. The process is envisioned to be used in for example the next ALICE inner tracker upgrade, and in experiments at the electron-ion collider. The initial goal of the three-year Tangerine project is to develop and test a sensor in a 65 nm CMOS imaging process that can be used in test beam telescopes at DESY, providing excellent spatial resolution and high time resolution, and thus demonstrating the capabilities of the process. The project covers all aspects of sensor R&D, from electronics and sensor design using simulations, to prototype test chip characterisation in labs and at test beams. The sensor design simulations are performed by using a powerful combination of detailed electric field simulations using technology computer-aided design and high-statistics Monte Carlo simulations using the Allpix Squared framework. A first prototype test chip in the process has been designed and produced, and successfully operated and tested both in labs and at test beams.
DOI: 10.1016/j.nima.2021.165744
2021
Cited 4 times
Position reconstruction for segmented detectors
The topic of the paper is the position reconstruction from signals of segmented detectors. With the help of a simple simulation, it is shown that the position reconstruction using the centre-of-gravity method is strongly biased, if the width of the charge (or e.g. light) distribution at the electrodes (or photo detectors) is less than the read-out pitch. A method is proposed which removes this bias for events with signals in two or more read-out channels and thereby improves the position resolution. The method also provides an estimate of the position–response function for every event. Examples are given for which its width as a function of the reconstructed position varies by as much as an order of magnitude. A fast Monte Carlo program is described which simulates the signals from a silicon pixel detector traversed by charged particles under different angles, and the results obtained with the proposed reconstruction method and with the centre-of-gravity method are compared. The simulation includes the local energy-loss fluctuations, the position-dependent electric field, the diffusion of the charge carriers, the electronics noise and charge thresholds for clustering, A comparison to test-beam-data is used to validate the simulation.
DOI: 10.1109/nss/mic42101.2019.9060046
2019
Cited 3 times
Beam Test Measurements on Planar Pixel Sensors for the CMS Phase 2 Upgrade
The requirements for the CMS Inner Tracker for the high luminosity upgrade of the Large Hadron Collider (LHC) are driven by the high expected instantaneous luminosity of up to 7.5 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">34</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> . The detector will have to withstand a 1 MeV neutron equivalent fluence of up to 2 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">16</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> at 2.8 cm distance from the beam. To improve the spatial resolution and limit cluster merging in this environment the current pixel size of 100×150 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> will be reduced by a factor of 6. Planar pixel sensors are the baseline technology for the outer 3 of the 4 pixel layers, where the irradiation level will reach a 1 MeV neutron equivalent fluence of 5 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> . For the innermost layer 3D sensors are also considered. Several variants of new n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> p-planar pixel sensors with pixel sizes of 50×50 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and 100 × 25 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and an active thickness of 150 μm have been designed, produced and bump bonded to readout chips. Apart from the pixel size, the design variants differ with respect to the implantation and metalization layout as well as the pixel isolation and biasing scheme. To select the most promising design for the future CMS Inner Tracker, these sensors were irradiated with protons and neutrons up to 1 MeV neutron equivalent fluences of 14 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> and characterized at the DESY H test beam facility. The key requirement, a hit efficiency above 99 % at bias voltages below 800 V, is met for sensors proton irradiated to IMeV neutron equivalent fluences above 5 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> , thus demonstrating the suitability of planar sensors for the pixel layers 2 to 4. In addition, the hit efficiency, signal to noise ratio and spatial resolution are determined as a function of the bias voltage, neutron equivalent fluence and angle, for proton and neutron irradiation and for different design variants, providing input for the final choice of the sensor design.
DOI: 10.48550/arxiv.2303.18153
2023
Developing a Monolithic Silicon Sensor in a 65 nm CMOS Imaging Technology for Future Lepton Collider Vertex Detectors
Monolithic CMOS sensors in a 65 nm imaging technology are being investigated by the CERN EP Strategic R&D Programme on Technologies for Future Experiments for an application in particle physics. The appeal of monolithic detectors lies in the fact that both sensor volume and readout electronics are integrated in the same silicon wafer, providing a reduction in production effort, costs and scattering material. The Tangerine Project WP1 at DESY participates in the Strategic R&D Programme and is focused on the development of a monolithic active pixel sensor with a time and spatial resolution compatible with the requirements for a future lepton collider vertex detector. By fulfilling these requirements, the Tangerine detector is suitable as well to be used as telescope planes for the DESY-II Test Beam facility. The project comprises all aspects of sensor development, from the electronics engineering and the sensor design using simulations, to laboratory and test beam investigations of prototypes. Generic TCAD Device and Monte-Carlo simulations are used to establish an understanding of the technology and provide important insight into performance parameters of the sensor. Testing prototypes in laboratory and test beam facilities allows for the characterization of their response to different conditions. By combining results from all these studies it is possible to optimize the sensor layout. This contribution presents results from generic TCAD and Monte-Carlo simulations, and measurements performed with test chips of the first sensor submission.
DOI: 10.48550/arxiv.2311.13220
2023
Monolithic MHz-frame rate digital SiPM-IC with sub-100 ps precision and 70$~μ$m pixel pitch
This paper presents the design and characterization of a monolithic integrated circuit (IC) including digital silicon photomultipliers (dSiPMs) arranged in a 32$~\times~$32 pixel matrix at 70$~\mu$m pitch. The IC provides per-quadrant time stamping and hit-map readout, and is fabricated in a standard 150-nm CMOS technology. Each dSiPM pixel consists of four single-photon avalanche diodes (SPADs) sharing a quenching and subsequent processing circuitry and has a fill factor of 30$~\%$. A sub-100$~$ps precision, 12-bit time-to-digital converter (TDC) provides timestamps per quadrant with an acquisition rate of 3$~$MHz. Together with the hit map, the total sustained data throughput of the IC amounts to 4$~$Gbps. Measurements obtained in a dark, temperature-stable environment as well as by using a pulsed laser environment show the full dSiPM-IC functionality. The dark-count rate (DCR) as function of the overvoltage and temperature, the TDC resolution, differential and integral nonlinearity (DNL/INL) as well as the propagation-delay variations across the matrix are presented. With aid of additional peripheral test structures, the main building blocks are characterized and key parameters are presented.
2017
Edge-TCT for the Investigation of Radiation Damaged Silicon Strip Sensors
DOI: 10.48550/arxiv.2210.09810
2022
Towards a New Generation of Monolithic Active Pixel Sensors
A new generation of Monolithic Active Pixel Sensors (MAPS), produced in a 65 nm CMOS imaging process, promises higher densities of on-chip circuits and, for a given pixel size, more sophisticated in-pixel logic compared to larger feature size processes. MAPS are a cost-effective alternative to hybrid pixel sensors since flip-chip bonding is not required. In addition, they allow for significant reductions of the material budget of detector systems, due to the smaller physical thicknesses of the active sensor and the absence of a separate readout chip. The TANGERINE project develops a sensor suitable for future Higgs factories as well as for a beam telescope to be used at beam-test facilities. The sensors will have small collection electrodes (order of $μ$m) to maximize the signal-to-noise ratio, which makes it possible to minimize power dissipation in the circuitry. The first batch of test chips, featuring full front-end amplifiers with Krummenacher feedback, was produced and tested at the Mainzer Mikrotron (MAMI) at the end of 2021. MAMI provides an electron beam with currents up to 100 $μ$A and an energy of 855 MeV. The analog output signal of the test chips was recorded with a high bandwidth oscilloscope and used to study the charge-sensitive amplifier of the chips in terms of waveform analysis. A beam telescope was used as a reference system to allow for track-based analysis of the recorded data.
DOI: 10.1109/nss/mic44845.2022.10398964
2022
Developing a Monolithic Silicon Sensor in a 65nm CMOS Imaging Technology for Future Lepton Collider Vertex Detectors
Monolithic CMOS sensors in a 65nm imaging technology are being investigated by the CERN EP Strategic R&D Programme on Technologies for Future Experiments for an application in particle physics. The appeal of monolithic detectors lies in the fact that both sensor volume and readout electronics are integrated in the same silicon wafer, providing a reduction in production effort, costs and scattering material. The Tangerine Project WP1 at DESY participates in the Strategic R&D Programme and is focused on the development of a monolithic active pixel sensor with a time and spatial resolution compatible with the requirements for a future lepton collider vertex detector. By fulfilling these requirements, the Tangerine detector is suitable as well to be used as telescope planes for the DESY-II Test Beam facility. The project comprises all aspects of sensor development, from the electronics engineering and the sensor design using simulations, to laboratory and test beam investigations of prototypes. Generic TCAD Device and Monte-Carlo simulations are used to establish an understanding of the technology and provide important insight into performance parameters of the sensor. Testing prototypes in laboratory and test beam facilities allows for the characterization of their response to different conditions. By combining results from all these studies it is possible to optimize the sensor layout. This contribution presents results from generic TCAD and Monte-Carlo simulations, and measurements performed with test chips of the first sensor submission.
DOI: 10.1016/j.nima.2021.165933
2022
Position resolution with 25 µm pitch pixel sensors before and after irradiation
Pixelated silicon detectors are state-of-the-art technology to achieve precise tracking and vertexing at collider experiments, designed to accurately measure the hit position of incoming particles in high rate and radiation environments. The detector requirements become extremely demanding for operation at the High-Luminosity LHC, where up to 200 interactions will overlap in the same bunch crossing on top of the process of interest. Additionally, fluences up to 2.3 10^16 cm^-2 1 MeV neutron equivalent at 3.0 cm distance from the beam are expected for an integrated luminosity of 3000 fb^-1. In the last decades, the pixel pitch has constantly been reduced to cope with the experiment's needs of achieving higher position resolution and maintaining low pixel occupancy per channel. The spatial resolution improves with a decreased pixel size but it degrades with radiation damage. Therefore, prototype sensor modules for the upgrade of the experiments at the HL-LHC need to be tested after being irradiated. This paper describes position resolution measurements on planar prototype sensors with 100x25 um^2 pixels for the CMS Phase-2 Upgrade. It reviews the dependence of the position resolution on the relative inclination angle between the incoming particle trajectory and the sensor, the charge threshold applied by the readout chip, and the bias voltage. A precision setup with three parallel planes of sensors has been used to investigate the performance of sensors irradiated to fluences up to F_eq = 3.6 10^15 cm-2. The measurements were performed with a 5 GeV electron beam. A spatial resolution of 3.2 +\- 0.1 um is found for non-irradiated sensors, at the optimal angle for charge sharing. The resolution is 5.0 +/- 0.2 um for a proton-irradiated sensor at F_eq = 2.1 10^15 cm-2 and a neutron-irradiated sensor at F_eq = 3.6 10^15 cm^-2.
2021
Position resolution with 25 um pitch pixel sensors before and after irradiation
Pixelated silicon detectors are state-of-the-art technology to achieve precise tracking and vertexing at collider experiments, designed to accurately measure the hit position of incoming particles in high rate and radiation environments. The detector requirements become extremely demanding for operation at the High-Luminosity LHC, where up to 200 interactions will overlap in the same bunch crossing on top of the process of interest. Additionally, fluences up to 2.3 10^16 cm^-2 1 MeV neutron equivalent at 3.0 cm distance from the beam are expected for an integrated luminosity of 3000 fb^-1. In the last decades, the pixel pitch has constantly been reduced to cope with the experiment's needs of achieving higher position resolution and maintaining low pixel occupancy per channel. The spatial resolution improves with a decreased pixel size but it degrades with radiation damage. Therefore, prototype sensor modules for the upgrade of the experiments at the HL-LHC need to be tested after being irradiated. This paper describes position resolution measurements on planar prototype sensors with 100x25 um^2 pixels for the CMS Phase-2 Upgrade. It reviews the dependence of the position resolution on the relative inclination angle between the incoming particle trajectory and the sensor, the charge threshold applied by the readout chip, and the bias voltage. A precision setup with three parallel planes of sensors has been used to investigate the performance of sensors irradiated to fluences up to F_eq = 3.6 10^15 cm-2. The measurements were performed with a 5 GeV electron beam. A spatial resolution of 3.2 +\- 0.1 um is found for non-irradiated sensors, at the optimal angle for charge sharing. The resolution is 5.0 +/- 0.2 um for a proton-irradiated sensor at F_eq = 2.1 10^15 cm-2 and a neutron-irradiated sensor at F_eq = 3.6 10^15 cm^-2.