ϟ

Elior Peles

Here are all the papers by Elior Peles that you can download and read on OA.mg.
Elior Peles’s last known institution is . Download Elior Peles PDFs here.

Claim this Profile →
DOI: 10.1038/376737a0
1995
Cited 1,337 times
Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions
The protein tyrosine kinase PYK2, which is highly expressed in the central nervous system, is rapidly phosphorylated on tyrosine residues in response to various stimuli that elevate the intracellular calcium concentration, as well as by protein kinase C activation. Activation of PYK2 leads to modulation of ion channel function and activation of the MAP kinase signalling pathway. PYK2 activation may provide a mechanism for a variety of short- and long-term calcium-dependent signalling events in the nervous system.
DOI: 10.1093/brain/awq213
2010
Cited 1,147 times
Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia
Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein-antibody positive patients (P < 0.0001), who predominantly had limbic encephalitis. The responses to immunomodulatory therapies, defined by changes in modified Rankin scores, were good except in the patients with tumours, who all had contactin-associated-2 protein antibodies. This study confirms that the majority of patients with high potassium channel antibodies have limbic encephalitis without tumours. The identification of leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 as the major targets of potassium channel antibodies, and their associations with different clinical features, begins to explain the diversity of these syndromes; furthermore, detection of contactin-associated protein-2 antibodies should help identify the risk of an underlying tumour and a poor prognosis in future patients.
DOI: 10.1016/j.cell.2011.08.040
2011
Cited 873 times
Absence of CNTNAP2 Leads to Epilepsy, Neuronal Migration Abnormalities, and Core Autism-Related Deficits
Although many genes predisposing to autism spectrum disorders (ASD) have been identified, the biological mechanism(s) remain unclear. Mouse models based on human disease-causing mutations provide the potential for understanding gene function and novel treatment development. Here, we characterize a mouse knockout of the Cntnap2 gene, which is strongly associated with ASD and allied neurodevelopmental disorders. Cntnap2(-/-) mice show deficits in the three core ASD behavioral domains, as well as hyperactivity and epileptic seizures, as have been reported in humans with CNTNAP2 mutations. Neuropathological and physiological analyses of these mice before the onset of seizures reveal neuronal migration abnormalities, reduced number of interneurons, and abnormal neuronal network activity. In addition, treatment with the FDA-approved drug risperidone ameliorates the targeted repetitive behaviors in the mutant mice. These data demonstrate a functional role for CNTNAP2 in brain development and provide a new tool for mechanistic and therapeutic research in ASD.
DOI: 10.1073/pnas.090034797
2000
Cited 606 times
Sodium channel Na <sub>v</sub> 1.6 is localized at nodes of Ranvier, dendrites, and synapses
Voltage-gated sodium channels perform critical roles for electrical signaling in the nervous system by generating action potentials in axons and in dendrites. At least 10 genes encode sodium channels in mammals, but specific physiological roles that distinguish each of these isoforms are not known. One possibility is that each isoform is expressed in a restricted set of cell types or is targeted to a specific domain of a neuron or muscle cell. Using affinity-purified isoform-specific antibodies, we find that Na(v)1.6 is highly concentrated at nodes of Ranvier of both sensory and motor axons in the peripheral nervous system and at nodes in the central nervous system. The specificity of this antibody was also demonstrated with the Na(v)1.6-deficient mouse mutant strain med, whose nodes were negative for Na(v)1.6 immunostaining. Both the intensity of labeling and the failure of other isoform-specific antibodies to label nodes suggest that Na(v)1.6 is the predominant channel type in this structure. In the central nervous system, Na(v)1.6 is localized in unmyelinated axons in the retina and cerebellum and is strongly expressed in dendrites of cortical pyramidal cells and cerebellar Purkinje cells. Ultrastructural studies indicate that labeling in dendrites is both intracellular and on dendritic shaft membranes. Remarkably, Na(v)1.6 labeling was observed at both presynaptic and postsynaptic membranes in the cortex and cerebellum. Thus, a single sodium channel isoform is targeted to different neuronal domains and can influence both axonal conduction and synaptic responses.
DOI: 10.1016/0092-8674(92)90456-m
1992
Cited 559 times
Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit
We recently reported that a 44 kd glycoprotein secreted by transformed fibroblasts stimulates tyrosine phosphorylation of the product of the neu proto-oncogene and induces differentiation of mammary tumor cells to milk-producing, growth-arrested cells. A partial amino acid sequence of the protein, termed Neu differentiation factor (NDF), enabled cloning of the corresponding complementary DNA. The deduced structure of the precursor of NDF indicated that it is a transmembrane protein whose extracellular portion contains an EGF-like domain that probably functions as a receptor recognition site. In addition, the ectodomain contains one immunoglobulin homology unit. Despite the lack of a recognizable hydrophobic signal peptide at the N-terminus, a recombinant NDF, like the natural molecule, is released into the medium of transfected COS-7 cells in a biologically active form. Northern blot analysis indicated the existence of several NDF transcripts, the major ones being 1.8, 2.6, and 6.7 kb in size. Transformation by the ras oncogene dramatically elevated the expression of NDF in fibroblasts.
DOI: 10.1038/nrn1253
2003
Cited 556 times
The local differentiation of myelinated axons at nodes of Ranvier
DOI: 10.1016/0092-8674(92)90131-u
1992
Cited 525 times
Isolation of the NeuHER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiation of mammary tumor cells
The neu/HER-2 proto-oncogene (also called erbB-2) encodes a transmembrane glycoprotein related to the epidermal growth factor receptor. We have purified to homogeneity a 44 kd glycoprotein from the medium of ras-transformed cells that stimulates phosphorylation of the Neu protein and retains activity after elution from the polyacrylamide gel. The protein is active at picomolar concentrations and displays a novel N-terminal sequence. Cross-linking experiments with radiolabeled p44 result in specific labeling of Neu, indicating that p44 is a ligand for Neu or a related receptor. The purified protein induces phenotypic differentiation of cultured human breast cancer cells, including altered morphology and synthesis of milk components. This is accompanied by an increase in nuclear area, inhibition of cell growth (probably by cell cycle arrest at the late S or the G2/M phases), and induction of DNA polyploidy. We propose the name Neu differentiation factor (NDF) for p44.
DOI: 10.1083/jcb.200305018
2003
Cited 508 times
Juxtaparanodal clustering of <i>Shaker</i>-like K+ channels in myelinated axons depends on Caspr2 and TAG-1
In myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2. These results demonstrate that Caspr2 and TAG-1 form a scaffold that is necessary to maintain K+ channels at the juxtaparanodal region, suggesting that axon–glia interactions mediated by these proteins allow myelinating glial cells to organize ion channels in the underlying axonal membrane.
DOI: 10.1016/s0896-6273(01)00296-3
2001
Cited 477 times
Contactin Orchestrates Assembly of the Septate-like Junctions at the Paranode in Myelinated Peripheral Nerve
Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.
DOI: 10.1016/s0896-6273(00)81049-1
1999
Cited 460 times
Caspr2, a New Member of the Neurexin Superfamily, Is Localized at the Juxtaparanodes of Myelinated Axons and Associates with K+ Channels
Rapid conduction in myelinated axons depends on the generation of specialized subcellular domains to which different sets of ion channels are localized. Here, we describe the identification of Caspr2, a mammalian homolog of Drosophila Neurexin IV (Nrx-IV), and show that this neurexin-like protein and the closely related molecule Caspr/Paranodin demarcate distinct subdomains in myelinated axons. While contactin-associated protein (Caspr) is present at the paranodal junctions, Caspr2 is precisely colocalized with Shaker-like K+ channels in the juxtaparanodal region. We further show that Caspr2 specifically associates with Kv1.1, Kv1.2, and their Kvbeta2 subunit. This association involves the C-terminal sequence of Caspr2, which contains a putative PDZ binding site. These results suggest a role for Caspr family members in the local differentiation of the axon into distinct functional subdomains.
DOI: 10.1093/emboj/16.5.978
1997
Cited 390 times
Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions
Receptor protein tyrosine phosphatase beta (RPTPbeta) expressed on the surface of glial cells binds to the glycosylphosphatidylinositol (GPI)-anchored recognition molecule contactin on neuronal cells leading to neurite outgrowth. We describe the cloning of a novel contactin-associated transmembrane receptor (p190/Caspr) containing a mosaic of domains implicated in protein-protein interactions. The extracellular domain of Caspr contains a neurophilin/coagulation factor homology domain, a region related to fibrinogen beta/gamma, epidermal growth factor-like repeats, neurexin motifs as well as unique PGY repeats found in a molluscan adhesive protein. The cytoplasmic domain of Caspr contains a proline-rich sequence capable of binding to a subclass of SH3 domains of signaling molecules. Caspr and contactin exist as a complex in rat brain and are bound to each other by means of lateral (cis) interactions in the plasma membrane. We propose that Caspr may function as a signaling component of contactin, enabling recruitment and activation of intracellular signaling pathways in neurons. The binding of RPTPbeta to the contactin-Caspr complex could provide a mechanism for cell-cell communication between glial cells and neurons during development.
DOI: 10.1016/0092-8674(95)90312-7
1995
Cited 388 times
The carbonic anhydrase domain of receptor tyrosine phosphatase β is a functional ligand for the axonal cell recognition molecule contactin
Receptor-type protein tyrosine phosphatase beta (RPTP beta) is expressed in the developing nervous system and contains a carbonic anhydrase (CAH) domain as well as a fibronectin type III repeat in its extracellular domain. Fusion proteins containing these domains were used to search for ligands of RPTP beta. The CAH domain bound specifically to a 140 kDa protein expressed on the surface of neuronal cells. Expression cloning in COS7 cells revealed that this protein is contactin, a GPI membrane-anchored neuronal cell recognition molecule. The CAH domain of RPTP beta induced cell adhesion and neurite growth of primary tectal neurons, and differentiation of neuroblastoma cells. These responses were blocked by antibodies against contactin, demonstrating that contactin is a neuronal receptor for RPTP beta. These experiments show that an individual domain of RPTP beta acts as a functional ligand for the neuronal receptor contactin. The interaction between contactin and RPTP beta may generate unidirectional or bidirectional signals during neural development.
DOI: 10.1002/ana.22297
2011
Cited 381 times
Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia
Abstract Objective To report clinical and immunological investigations of contactin‐associated protein‐like 2 (Caspr2), an autoantigen of encephalitis and peripheral nerve hyperexcitability (PNH) previously attributed to voltage‐gated potassium channels (VGKC). Methods Clinical analysis was performed on patients with encephalitis, PNH, or both. Immunoprecipitation and mass spectrometry were used to identify the antigen and to develop an assay with Caspr2‐expressing cells. Immunoabsorption with Caspr2 and comparative immunostaining of brain and peripheral nerve of wild‐type and Caspr2 ‐null mice were used to assess antibody specificity. Results Using Caspr2‐expressing cells, antibodies were identified in 8 patients but not in 140 patients with several types of autoimmune or viral encephalitis, PNH, or mutations of the Caspr2‐encoding gene. Patients' antibodies reacted with brain and peripheral nerve in a pattern that colocalized with Caspr2. This reactivity was abrogated after immunoabsorption with Caspr2 and was absent in tissues from Caspr2 ‐null mice. Of the 8 patients with Caspr2 antibodies, 7 had encephalopathy or seizures, 5 neuropathy or PNH, and 1 isolated PNH. Three patients also had myasthenia gravis, bulbar weakness, or symptoms that initially suggested motor neuron disease. None of the patients had active cancer; 7 responded to immunotherapy and were healthy or only mildly disabled at last follow‐up (median, 8 months; range, 6–84 months). Interpretation Caspr2 is an autoantigen of encephalitis and PNH previously attributed to VGKC antibodies. The occurrence of other autoantibodies may result in a complex syndrome that at presentation could be mistaken for a motor neuron disorder. Recognition of this disorder is important, because it responds to immunotherapy. Ann Neurol 2011
DOI: 10.1083/jcb.139.6.1495
1997
Cited 343 times
The Axonal Membrane Protein Caspr, a Homologue of Neurexin IV, Is a Component of the Septate-like Paranodal Junctions That Assemble during Myelination
We have investigated the potential role of contactin and contactin-associated protein (Caspr) in the axonal–glial interactions of myelination. In the nervous system, contactin is expressed by neurons, oligodendrocytes, and their progenitors, but not by Schwann cells. Expression of Caspr, a homologue of Neurexin IV, is restricted to neurons. Both contactin and Caspr are uniformly expressed at high levels on the surface of unensheathed neurites and are downregulated during myelination in vitro and in vivo. Contactin is downregulated along the entire myelinated nerve fiber. In contrast, Caspr expression initially remains elevated along segments of neurites associated with nascent myelin sheaths. With further maturation, Caspr is downregulated in the internode and becomes strikingly concentrated in the paranodal regions of the axon, suggesting that it redistributes from the internode to these sites. Caspr expression is similarly restricted to the paranodes of mature myelinated axons in the peripheral and central nervous systems; it is more diffusely and persistently expressed in gray matter and on unmyelinated axons. Immunoelectron microscopy demonstrated that Caspr is localized to the septate-like junctions that form between axons and the paranodal loops of myelinating cells. Caspr is poorly extracted by nonionic detergents, suggesting that it is associated with the axon cytoskeleton at these junctions. These results indicate that contactin and Caspr function independently during myelination and that their expression is regulated by glial ensheathment. They strongly implicate Caspr as a major transmembrane component of the paranodal junctions, whose molecular composition has previously been unknown, and suggest its role in the reciprocal signaling between axons and glia.
DOI: 10.1126/scitranslmed.3010257
2015
Cited 315 times
Exogenous and evoked oxytocin restores social behavior in the <i>Cntnap2</i> mouse model of autism
Mice carrying a genetic mutation that causes autistic symptoms show improved sociability after being treated with oxytocin, a hormone promoting mothering and trust.
DOI: 10.1016/j.neuron.2005.06.026
2005
Cited 293 times
Gliomedin Mediates Schwann Cell-Axon Interaction and the Molecular Assembly of the Nodes of Ranvier
Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier.
DOI: 10.1212/wnl.0b013e31827689ad
2012
Cited 210 times
Neurofascin as a target for autoantibodies in peripheral neuropathies
We asked whether autoantibodies against neurofascin (NF)186 or NF155, both localized at the nodes of Ranvier, are present in serum of patients with inflammatory neuropathy, and whether NF-specific monoclonal antibodies are pathogenic in vivo.We cloned human NF155 and NF186, and developed an ELISA and cell-based assay to screen for antibodies to human NF in a total of 434 donors including 294 patients with Guillain-Barré syndrome variants acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy, and chronic inflammatory demyelinating polyneuropathy (CIDP). We characterized reactive samples by isotyping, tissue section staining, and epitope mapping. We also injected NF-specific monoclonal antibodies IV into rats with experimental autoimmune neuritis.We detected autoantibodies to NF by ELISA in 4% of patients with AIDP and CIDP, but not in controls. Most positive samples contained immunoglobulin G (IgG)1, IgG3, or IgG4 antibodies directed to only one isoform of NF. Two patients with CIDP showed particularly high (1:10,000 dilution) NF155-specific reactivity in both assays and stained paranodes. Two other patients with CIDP who benefited from plasma exchange exhibited antibodies to NF155 by ELISA, and upon affinity purification, antibodies to both isoforms were observed by both assays. Anti-NF monoclonal antibodies enhanced and prolonged induced neuritis in rats.Autoantibodies to NF are detected in a very small proportion of patients with AIDP and patients with CIDP, but may nevertheless be pathogenic in these cases.
DOI: 10.1101/cshperspect.a020495
2015
Cited 150 times
The Nodes of Ranvier: Molecular Assembly and Maintenance
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).
DOI: 10.1093/brain/aww189
2016
Cited 148 times
Auto-antibodies to contactin-associated protein 1 (Caspr) in two patients with painful inflammatory neuropathy
Auto-antibodies against the paranodal proteins neurofascin-155 and contactin-1 have recently been described in patients with chronic inflammatory demyelinating polyradiculoneuropathy and are associated with a distinct clinical phenotype and response to treatment. Contactin-associated protein 1 (Caspr, encoded by CNTNAP1 ) is a paranodal protein that is attached to neurofascin-155 and contactin-1 (CNTN1) but has not yet been identified as a sole antigen in patients with inflammatory neuropathies. In the present study, we screened a cohort of 35 patients with chronic inflammatory demyelinating polyradiculoneuropathy (age range 20–80, 10 female, 25 male) and 22 patients with Guillain-Barré syndrome (age range 17–86, eight female, 14 male) for autoantibodies against paranodal antigens. We identified two patients, one with chronic inflammatory demyelinating polyradiculoneuropathy and one with Guillain-Barré syndrome, with autoantibodies against Caspr by binding assays using Caspr transfected human embryonic kidney cells and murine teased fibres. IgG3 was the predominant autoantibody subclass in the patient with Guillain-Barré syndrome, IgG4 was predominant in the patient with chronic inflammatory demyelinating polyradiculoneuropathy. Accordingly, complement deposition after binding to HEK293 cells was detectable in the patient with IgG3 autoantibodies only, not in the patient with IgG4. Severe disruption of the paranodal and nodal architecture was detectable in teased fibres of the sural nerve biopsy and in dermal myelinated fibres, supporting the notion of the paranodes being the site of pathology. Deposition of IgG at the paranodes was detected in teased fibre preparations of the sural nerve, further supporting the pathogenicity of anti-Caspr autoantibodies. Pain was one of the predominant findings in both patients, possibly reflected by binding of patients' IgG to TRPV1 immunoreactive dorsal root ganglia neurons. Our results demonstrate that the paranodal protein Caspr constitutes a new antigen that leads to autoantibody generation as part of the novel entity of neuropathies associated with autoantibodies against paranodal proteins.
DOI: 10.1523/jneurosci.19-17-07516.1999
1999
Cited 306 times
Dependence of Nodal Sodium Channel Clustering on Paranodal Axoglial Contact in the Developing CNS
Na(+) channel clustering at nodes of Ranvier in the developing rat optic nerve was analyzed to determine mechanisms of localization, including the possible requirement for glial contact in vivo. Immunofluorescence labeling for myelin-associated glycoprotein and for the protein Caspr, a component of axoglial junctions, indicated that oligodendrocytes were present, and paranodal structures formed, as early as postnatal day 7 (P7). However, the first Na(+) channel clusters were not seen until P9. Most of these were broad, and all were excluded from paranodal regions of axoglial contact. The number of detected Na(+) channel clusters increased rapidly from P12 to P22. During this same period, conduction velocity increased sharply, and Na(+) channel clusters became much more focal. To test further whether oligodendrocyte contact directly influences Na(+) channel distributions, nodes of Ranvier in the hypomyelinating mouse Shiverer were examined. This mutant has oligodendrocyte-ensheathed axons but lacks compact myelin and normal axoglial junctions. During development Na(+) channel clusters in Shiverer mice were reduced in numbers and were in aberrant locations. The subcellular location of Caspr was disrupted, and nerve conduction properties remained immature. These results indicate that in vivo, Na(+) channel clustering at nodes depends not only on the presence of oligodendrocytes but also on specific axoglial contact at paranodal junctions. In rats, ankyrin-3/G, a cytoskeletal protein implicated in Na(+) channel clustering, was detected before Na(+) channel immunoreactivity but extended into paranodes in non-nodal distributions. In Shiverer, ankyrin-3/G labeling was abnormal, suggesting that its localization also depends on axoglial contact.
DOI: 10.1002/bies.950151207
1993
Cited 275 times
Neu and its ligands: From an oncogene to neural factors
Transmembrane receptor tyrosine kinases that bind to peptide factors transmit essential growth and differentiation signals. A growing list of orphan receptors, of which some are oncogenic, holds the promise that many unknown ligands may be discovered by tracking the corresponding surface molecules. The neu gene (also called erbB-2 and HER-2) encodes such a receptor tyrosine kinase whose oncogenic potential is released in the developing rodent nervous system through a point mutation. Amplification and overexpression of neu are thought to contribute to malignancy of certain human adenocarcinomas. The search for soluble factors that interact with the Neu receptor led to the discovery of a 44 kDa glycoprotein that induces phenotypic differentiation of cultured mammary tumor cells to growth-arrested and milk-producing cells. The Neu differentiation factor (NDF or heregulin), however, also acts as a mitogen for epithelial, Schwann and glial cells. Multiple forms of the factor are produced by alternative splicing and their expression is confined predominantly to the central and to the peripheral nervous systems. One identified neuronal function of this family of polypeptides is to control the formation of neuromuscular junctions, but their physiological role in secretory epithelia is still unknown. Other open questions relate to the transmembrane topology of various precursors, the identity of a putative coreceptor, the possible existence of additional ligands of Neu and the functional significance of the interaction between Neu and at least three highly related receptor tyrosine kinases.
DOI: 10.1016/s0021-9258(17)31521-1
1994
Cited 265 times
ErbB-3 and ErbB-4 function as the respective low and high affinity receptors of all Neu differentiation factor/heregulin isoforms.
Neu differentiation factor (NDF or heregulin) elevates tyrosine phosphorylation of the ErbB-2 receptor tyrosine kinase, and it was, therefore, thought to function as a ligand of this receptor. However, several lines of evidence raised the possibility that the interaction between NDF and ErbB-2 involves another molecule, which belongs to the family of epidermal growth factor receptors. To address this question we constructed soluble chimeric proteins between alkaline phosphatase and the extracellular domains of ErbB-2 and either ErbB-3 or ErbB-4, two newly recognized members of the epidermal growth factor receptor family. Using the soluble proteins we found that beta isoforms of NDF specifically bind to the ErbB-3 and ErbB-4 receptors but not to the soluble ErbB-2 protein. When ectopically expressed in monkey fibroblasts, the full-length ErbB-3 and ErbB-4 receptors conferred specific binding to NDF. In these cells ErbB-3 displayed lower ligand binding affinity than ErbB-4, but like the latter receptor it preferred to bind the beta isoform over the alpha class of NDFs. These results indicate that both ErbB-3 and ErbB-4 function as physiological receptors of all NDF isoforms and suggest that a still unknown ligand of ErbB-2 exists.
DOI: 10.1021/bi00502a002
1990
Cited 243 times
Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTHeterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulationRina Goldman, Rachel Ben Levy, Elior Peles, and Yosef YardenCite this: Biochemistry 1990, 29, 50, 11024–11028Publication Date (Print):December 18, 1990Publication History Published online1 May 2002Published inissue 18 December 1990https://doi.org/10.1021/bi00502a002RIGHTS & PERMISSIONSArticle Views212Altmetric-Citations172LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit PDF (3 MB) Get e-Alerts Get e-Alerts
DOI: 10.1523/jneurosci.20-22-08354.2000
2000
Cited 235 times
Contactin-Associated Protein (Caspr) and Contactin Form a Complex That Is Targeted to the Paranodal Junctions during Myelination
Specialized paranodal junctions form between the axon and the closely apposed paranodal loops of myelinating glia. They are interposed between sodium channels at the nodes of Ranvier and potassium channels in the juxtaparanodal regions; their precise function and molecular composition have been elusive. We previously reported that Caspr (contactin-associated protein) is a major axonal constituent of these junctions (Einheber et al., 1997). We now report that contactin colocalizes and forms a cis complex with Caspr in the paranodes and juxtamesaxon. These proteins coextract and coprecipitate from neurons, myelinating cultures, and myelin preparations enriched in junctional markers; they fractionate on sucrose gradients as a high-molecular-weight complex, suggesting that other proteins may also be associated with this complex. Neurons express two contactin isoforms that differ in their extent of glycosylation: a lower-molecular-weight phosphatidylinositol phospholipase C (PI-PLC)-resistant form is associated specifically with Caspr in the paranodes, whereas a higher-molecular-weight form of contactin, not associated with Caspr, is present in central nodes of Ranvier. These results suggest that the targeting of contactin to different axonal domains may be determined, in part, via its association with Caspr. Treatment of myelinating cocultures of Schwann cells and neurons with RPTPβ–Fc, a soluble construct containing the carbonic anhydrase domain of the receptor protein tyrosine phosphatase β (RPTPβ), a potential glial receptor for contactin, blocks the localization of the Caspr/contactin complex to the paranodes. These results strongly suggest that a preformed complex of Caspr and contactin is targeted to the paranodal junctions via extracellular interactions with myelinating glia.
DOI: 10.1523/jneurosci.22-15-06507.2002
2002
Cited 231 times
A Myelin Galactolipid, Sulfatide, Is Essential for Maintenance of Ion Channels on Myelinated Axon But Not Essential for Initial Cluster Formation
Myelinated axons are divided into four distinct regions: the node of Ranvier, paranode, juxtaparanode, and internode, each of which is characterized by a specific set of axonal proteins. Voltage-gated Na+ channels are clustered at high densities at the nodes, whereas shaker-type K+ channels are concentrated at juxtaparanodal regions. These channels are separated by the paranodal regions, where septate-like junctions are formed between the axon and the myelinating glial cells. Although oligodendrocytes and myelin sheaths are believed to play an instructive role in the local differentiation of the axon to distinct domains, the molecular mechanisms involved are poorly understood. In the present study, we have examined the distribution of axonal components in mice incapable of synthesizing sulfatide by disruption of the galactosylceramide sulfotransferase gene. These mice displayed abnormal paranodal junctions in the CNS and PNS, whereas their compact myelin was preserved. Immunohistochemical analysis demonstrated a decrease in Na+ and K+ channel clusters, altered nodal length, abnormal localization of K+ channel clusters appearing primarily in the presumptive paranodal regions, and diffuse distribution of contactin-associated protein along the internode. Similar abnormalities have been reported previously in mice lacking both galactocerebroside and sulfatide. Interestingly, although no demyelination was observed, these channel clusters decreased markedly with age. The initial timing and the number of Na+ channel clusters formed were normal during development. These results indicate a critical role for sulfatide in proper localization and maintenance of ion channels clusters, whereas they do not appear to be essential for initial cluster formation of Na+ channels.
DOI: 10.1002/j.1460-2075.1993.tb05737.x
1993
Cited 227 times
Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships.
Research Article1 March 1993free access Cell-type specific interaction of Neu differentiation factor (NDF/heregulin) with Neu/HER-2 suggests complex ligand-receptor relationships. E. Peles E. Peles Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author R. Ben-Levy R. Ben-Levy Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author E. Tzahar E. Tzahar Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author N. Liu N. Liu Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author D. Wen D. Wen Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author Y. Yarden Y. Yarden Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author E. Peles E. Peles Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author R. Ben-Levy R. Ben-Levy Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author E. Tzahar E. Tzahar Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author N. Liu N. Liu Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author D. Wen D. Wen Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author Y. Yarden Y. Yarden Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. Search for more papers by this author Author Information E. Peles1, R. Ben-Levy1, E. Tzahar1, N. Liu1, D. Wen1 and Y. Yarden1 1Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel. The EMBO Journal (1993)12:961-971https://doi.org/10.1002/j.1460-2075.1993.tb05737.x PDFDownload PDF of article text and main figures. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info The Neu/HER-2 receptor tyrosine kinase is overexpressed in some types of human adenocarcinomas, including tumors of the breast and the ovary. A 44 kDa glycoprotein that elevates tyrosine phosphorylation of Neu has been isolated and named Neu differentiation factor (NDF), or heregulin. Here we show that NDF affects tyrosine phosphorylation of Neu in human tumor cells of breast, colon and neuronal origin, but not in ovarian cells that overexpress the receptor. By using monoclonal antibodies (mAbs) to Neu, we found that the ovarian receptor is immunologically and biochemically similar to the mammary p185neu. Nevertheless, unlike breast-derived Neu, the ovarian protein did not display covalent cross-linking to radiolabeled NDF, and was devoid of ligand-induced association with phosphatidylinositol 3′-kinase. Direct binding analysis showed that NDF binds with high affinity (Kd approximately 10(−9) M) to mammary cells, but its weak association with ovarian cells is probably mediated by heparin-like molecules. Similar to the endogenous receptor, the ectopically overexpressed Neu of mammary cells, but not of ovarian and fibroblastic cells, exhibited elevated levels of NDF-induced phosphorylation and covalent cross-linking of the radiolabeled factor. Taken together, our results imply that NDF binding to cells requires both Neu and an additional cellular component, whose identity is still unknown, but its tissue distribution is more restricted than the expression of the neu gene. Previous ArticleNext Article Volume 12Issue 31 March 1993In this issue RelatedDetailsLoading ...
DOI: 10.1016/s0959-4388(00)00122-7
2000
Cited 219 times
Molecular domains of myelinated axons
Myelinated axons are organized into specific domains as the result of interactions with glial cells. Recently, distinct protein complexes of cell adhesion molecules, Na+ channels and ankyrin G at the nodes, Caspr and contactin in the paranodes, and K+ channels and Caspr2 in the juxtaparanodal region have been identified, and new insights into the role of the paranodal junctions in the organization of these domains have emerged.
DOI: 10.1002/glia.20750
2008
Cited 196 times
Molecular domains of myelinated axons in the peripheral nervous system
Myelinated axons are organized into a series of specialized domains with distinct molecular compositions and functions. These domains, which include the node of Ranvier, the flanking paranodal junctions, the juxtaparanodes, and the internode, form as the result of interactions with myelinating Schwann cells. This domain organization is essential for action potential propagation by saltatory conduction and for the overall function and integrity of the axon.
DOI: 10.1038/nn1915
2007
Cited 183 times
A central role for Necl4 (SynCAM4) in Schwann cell–axon interaction and myelination
Myelination in the peripheral nervous system requires close contact between Schwann cells and the axon, but the underlying molecular basis remains largely unknown. Here we show that cell adhesion molecules (CAMs) of the nectin-like (Necl, also known as SynCAM or Cadm) family mediate Schwann cell–axon interaction during myelination. Necl4 is the main Necl expressed by myelinating Schwann cells and is located along the internodes in direct apposition to Necl1, which is localized on axons. Necl4 serves as the glial binding partner for axonal Necl1, and the interaction between these two CAMs mediates Schwann cell adhesion. The disruption of the interaction between Necl1 and Necl4 by their soluble extracellular domains, or the expression of a dominant-negative Necl4 in Schwann cells, inhibits myelination. These results suggest that Necl proteins are important for mediating axon-glia contact during myelination in peripheral nerves.
DOI: 10.1016/j.neuron.2010.02.004
2010
Cited 183 times
A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na+ Channels during the Formation of Nodes of Ranvier
Saltatory conduction requires high-density accumulation of Na(+) channels at the nodes of Ranvier. Nodal Na(+) channel clustering in the peripheral nervous system is regulated by myelinating Schwann cells through unknown mechanisms. During development, Na(+) channels are first clustered at heminodes that border each myelin segment, and later in the mature nodes that are formed by the fusion of two heminodes. Here, we show that initial clustering of Na(+) channels at heminodes requires glial NrCAM and gliomedin, as well as their axonal receptor neurofascin 186 (NF186). We further demonstrate that heminodal clustering coincides with a second, paranodal junction (PNJ)-dependent mechanism that allows Na(+) channels to accumulate at mature nodes by restricting their distribution between two growing myelin internodes. We propose that Schwann cells assemble the nodes of Ranvier by capturing Na(+) channels at heminodes and by constraining their distribution to the nodal gap. Together, these two cooperating mechanisms ensure fast and efficient conduction in myelinated nerves.
DOI: 10.1083/jcb.200207050
2002
Cited 176 times
Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells
The apposed membranes of myelinating Schwann cells are joined by several types of junctional specializations known as autotypic or reflexive junctions. These include tight, gap, and adherens junctions, all of which are found in regions of noncompact myelin: the paranodal loops, incisures of Schmidt-Lanterman, and mesaxons. The molecular components of autotypic tight junctions have not been established. Here we report that two homologues of Discs Lost–multi PDZ domain protein (MUPP)1, and Pals-associated tight junction protein (PATJ), are differentially localized in myelinating Schwann cells and associated with different claudins. PATJ is mainly found at the paranodal loops, where it colocalized with claudin-1. MUPP1 and claudin-5 colocalized in the incisures, and the COOH-terminal region of claudin-5 interacts with MUPP1 in a PSD-95/Disc Large/zona occludens (ZO)-1 (PDZ)-dependent manner. In developing nerves, claudin-5 and MUPP1 appear together in incisures during the first postnatal week, suggesting that they coassemble during myelination. Finally, we show that the incisures also contain four other PDZ proteins that are found in epithelial tight junctions, including three membrane-associated guanylate-kinase proteins (membrane-associated guanylate-kinase inverted-2, ZO-1, and ZO-2) and the adaptor protein Par-3. The presence of these different tight junction proteins in regions of noncompact myelin may be required to maintain the intricate cytoarchitecture of myelinating Schwann cells.
DOI: 10.1523/jneurosci.3649-04.2004
2004
Cited 176 times
Mechanisms and Roles of Axon-Schwann Cell Interactions
Schwann cells (SCs) cover most of the surface of all axons in peripheral nerves.Axons and these glial cells are not only in intimate physical contact but also in constant and dynamic communication, each one influencing and regulating the development, function, and maintenance of the other.In recent years, there has been significant progress in the understanding of the molecular mechanisms of axon-Schwann cell interactions, particularly those relevant for postnatal development and maintenance of nerve function and structure.In this review, we discuss recent progress in four aspects of axon-Schwann cell interactions, including the roles of the neuregulin1 (NRG1)-erbB signaling pathway, the mechanisms underlying the formation and function of the node of Ranvier, the role of perisynaptic Schwann cells at the neuromuscular junction, and the mechanisms that generate Schwann cell tumors.Along the entire length of mammalian peripheral nerves, axons of motor, sensory, and autonomic neurons are in close association with SCs.The intimate contact between SCs and peripheral axons provided a first indication that these cells interact in important ways.In the mature nervous system, Schwann cells can be divided into four classes: myelinating cells (MSCs), nonmyelinating cells (NMSCs), perisynaptic Schwann cells (PSCs) (also known as terminal Schwann cells), and satellite cells of peripheral ganglia.These classes are based on their morphology, biochemical makeup, and the neuronal types (or area of their axons) with which they associate.MSCs, the best characterized SC, wrap around all large-diameter axons, including all motor neurons and some sensory neurons.Each MSC associates with a single axon and creates the myelin sheath necessary for saltatory nerve conduction (Fig. 1 A).NMSCs associate with small-diameter axons of C-fibers emanating from many sensory and all postganglionic sympathetic neurons.Each NMSC wraps around several sensory axons to form a Remak bundle, keeping individual axons separated by thin extensions of the Schwann cell body (Fig. 1 B).Finally, located more peripherally, PSCs reside at the neuromuscular junctions (NMJ), where they cover, without completely wrapping around, the presynaptic terminal of motor axons (Fig. 1C).Satellite cells, which will not be discussed here, associate with neuronal cell bodies in peripheral ganglia. Schwann cells, their origins, and their adult characteristicsThe diverse types of SCs found in the adult nerve are primarily derived from a single precursor cell type, the neural crest cell.Some SCs may derive from placodes and ventral neural tube.The multipotent and actively migratory neural crest cells migrate into the peripheral nerves during embryonic development, in which they mature in a stepwise process, giving rise to all SCs (Fig. 2).By embryonic day 12 (E12) to E13 in mice, Schwann cell precursors begin to express three differentiation markers: P0 (myelin protein 0), GAP43 (growth-associated protein 43), and F-spondin, (Jessen and Mirsky, 1999).From E15 to the time of birth, these precursors give rise to immature Schwann cells, which express S100␤ and low levels of the myelin protein P0 (Jessen et al., 1994).Finally, after birth, the immature SCs differentiate into myelinating, nonmyelinating, and perisynaptic phenotypes, a process that continues over several weeks.Axons provide signals that regulate the choice between the different SC phenotypes, but molecular identity of these signals remains unknown.Undoubtedly, signals from the different axonal types and regions are important.The three types of SCs not only differ in the type of axons with which they associate, their location along axons, and their morphology, but they also differ dramatically in their biochemical composition.MSCs, the best characterized biochemically, express myelin proteins such as MBP (myelin basic protein), PMP22 (peripheral myelin protein 22), P0, MAG (myelinassociated glycoprotein), and MAL (myelin and lymphocyte protein).These proteins are critical for the formation and function of myelin sheaths.The NMSCs and PSCs have been characterized to a much lesser extent.NMSCs can be distinguished from their neighboring MSCs by their high levels of glial fibrillary acidic protein (GFAP) (Jessen et al., 1990), the low-affinity neurotrophin receptor p75 (Jessen et al., 1990) and the cell adhesion molecule L1 (Faissner et al., 1984).No specific markers exist for PSCs, but, within the NMJ, these cells can be easily visualized and studied using S100␤ as a marker (Woolf et al., 1992) (see Fig. 4).Myelinating, nonmyelinating, and perisynaptic SCs also differ in their function.As with their other aspects, MSCs are the best understood.These cells form the myelin sheath critical for rapid
DOI: 10.1083/jcb.136.4.907
1997
Cited 166 times
Induction of Neurite Outgrowth through Contactin and Nr-CAM by Extracellular Regions of Glial Receptor Tyrosine Phosphatase β
Receptor protein tyrosine phosphatase β (RPTPβ) is expressed as soluble and receptor forms with common extracellular regions consisting of a carbonic anhydrase domain (C), a fibronectin type III repeat (F), and a unique region called S. We showed previously that a recombinant Fc fusion protein with the C domain (βC) binds to contactin and supports neuronal adhesion and neurite growth. As a substrate, βCFS was less effective in supporting cell adhesion, but it was a more effective promoter of neurite outgrowth than βCF. βS had no effect by itself, but it potentiated neurite growth when mixed with βCF. Neurite outgrowth induced by βCFS was inhibited by antibodies against Nr-CAM and contactin, and these cell adhesion molecules formed a complex that bound βCFS. NIH3T3 cells transfected to express βCFS on their surfaces induced neuronal differentiation in culture. These results suggest that binding of glial RPTPβ to the contactin/Nr-CAM complex is important for neurite growth and neuronal differentiation.
DOI: 10.1038/nature13248
2014
Cited 150 times
Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission
The molecular relationship between synaptic dysfunction and psychiatric disorders was investigated using a mouse model system; presynaptically localized Cntnap4 is required for the output of two disease-relevant neuronal subpopulations (cortical parvalbumin-positive GABAergic cells and midbrain dopaminergic neurons) and Cntnap4 mutants show behavioural abnormalities which can be pharmacologically reversed. Although considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells1,2. Notably, other disease-associated genes such as BDNF and ERBB4 implicate specific interneuron synapses in psychiatric disorders3,4. Consistent with this, cortical interneuron dysfunction has been linked to epilepsy, schizophrenia and autism5,6. Using a microarray screen that focused upon synapse-associated molecules, we identified Cntnap4 (contactin associated protein-like 4, also known as Caspr4) as highly enriched in developing murine interneurons. In this study we show that Cntnap4 is localized presynaptically and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive GABAergic (γ-aminobutyric acid producing) basket cells. Paradoxically, the loss of Cntnap4 augments midbrain dopaminergic release in the nucleus accumbens. In Cntnap4 mutant mice, synaptic defects in these disease-relevant neuronal populations are mirrored by sensory-motor gating and grooming endophenotypes; these symptoms could be pharmacologically reversed, providing promise for therapeutic intervention in psychiatric disorders.
DOI: 10.1016/j.neuron.2013.03.005
2013
Cited 149 times
Three Mechanisms Assemble Central Nervous System Nodes of Ranvier
Rapid action potential propagation in myelinated axons requires Na⁺ channel clustering at nodes of Ranvier. However, the mechanism of clustering at CNS nodes remains poorly understood. Here, we show that the assembly of nodes of Ranvier in the CNS involves three mechanisms: a glia-derived extracellular matrix (ECM) complex containing proteoglycans and adhesion molecules that cluster NF186, paranodal axoglial junctions that function as barriers to restrict the position of nodal proteins, and axonal cytoskeletal scaffolds (CSs) that stabilize nodal Na⁺ channels. We show that while mice with a single disrupted mechanism had mostly normal nodes, disruptions of the ECM and paranodal barrier, the ECM and CS, or the paranodal barrier and CS all lead to juvenile lethality, profound motor dysfunction, and significantly reduced Na⁺ channel clustering. Our results demonstrate that ECM, paranodal, and axonal cytoskeletal mechanisms ensure robust CNS nodal Na⁺ channel clustering.
DOI: 10.1523/jneurosci.0425-06.2006
2006
Cited 147 times
Spectrins and AnkyrinB Constitute a Specialized Paranodal Cytoskeleton
Paranodal junctions of myelinated nerve fibers are important for saltatory conduction and function as paracellular and membrane protein diffusion barriers flanking nodes of Ranvier. The formation of these specialized axoglial contacts depends on the presence of three cell adhesion molecules: neurofascin 155 on the glial membrane and a complex of Caspr and contactin on the axon. We isolated axonal and glial membranes highly enriched in these paranodal proteins and then used mass spectrometry to identify additional proteins associated with the paranodal axoglial junction. This strategy led to the identification of three novel components of the paranodal cytoskeleton: ankyrinB, alphaII spectrin, and betaII spectrin. Biochemical and immunohistochemical analyses revealed that these proteins associate with protein 4.1B in a macromolecular complex that is concentrated at central and peripheral paranodal junctions in the adult and during early myelination. Furthermore, we show that the paranodal localization of ankyrinB is disrupted in Caspr-null mice with aberrant paranodal junctions, demonstrating that paranodal neuron-glia interactions regulate the organization of the underlying cytoskeleton. In contrast, genetic disruption of the juxtaparanodal protein Caspr2 or the nodal cytoskeletal protein betaIV spectrin did not alter the paranodal cytoskeleton. Our results demonstrate that the paranodal junction contains specialized cytoskeletal components that may be important to stabilize axon-glia interactions and contribute to the membrane protein diffusion barrier found at paranodes.
DOI: 10.1016/j.neuron.2018.01.033
2018
Cited 124 times
Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability
Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.
DOI: 10.1523/jneurosci.4661-09.2010
2010
Cited 113 times
ADAM22, A Kv1 Channel-Interacting Protein, Recruits Membrane-Associated Guanylate Kinases to Juxtaparanodes of Myelinated Axons
Clustered Kv1 K + channels regulate neuronal excitability at juxtaparanodes of myelinated axons, axon initial segments, and cerebellar basket cell terminals (BCTs). These channels are part of a larger protein complex that includes cell adhesion molecules and scaffolding proteins. To identify proteins that regulate assembly, clustering, and/or maintenance of axonal Kv1 channel protein complexes, we immunoprecipitated Kv1.2 α subunits, and then used mass spectrometry to identify interacting proteins. We found that a disintegrin and metalloproteinase 22 (ADAM22) is a component of the Kv1 channel complex and that ADAM22 coimmunoprecipitates Kv1.2 and the membrane-associated guanylate kinases (MAGUKs) PSD-93 and PSD-95. When coexpressed with MAGUKs in heterologous cells, ADAM22 and Kv1 channels are recruited into membrane surface clusters. However, coexpression of Kv1.2 with ADAM22 and MAGUKs does not alter channel properties. Among all the known Kv1 channel-interacting proteins, only ADAM22 is found at every site where Kv1 channels are clustered. Analysis of Caspr -null mice showed that, like other previously described juxtaparanodal proteins, disruption of the paranodal junction resulted in redistribution of ADAM22 into paranodal zones. Analysis of Caspr2 -, PSD-93 -, PSD-95 -, and double PSD-93 / PSD-95 -null mice showed ADAM22 clustering at BCTs requires PSD-95, but ADAM22 clustering at juxtaparanodes requires neither PSD-93 nor PSD-95. In direct contrast, analysis of ADAM22 -null mice demonstrated juxtaparanodal clustering of PSD-93 and PSD-95 requires ADAM22, whereas Kv1.2 and Caspr2 clustering is normal in ADAM22 -null mice. Thus, ADAM22 is an axonal component of the Kv1 K + channel complex that recruits MAGUKs to juxtaparanodes.
DOI: 10.1073/pnas.1423205112
2015
Cited 107 times
Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2 <i>/Caspr2</i> knockout neurons
Central glutamatergic synapses and the molecular pathways that control them are emerging as common substrates in the pathogenesis of mental disorders. Genetic variation in the contactin associated protein-like 2 (CNTNAP2) gene, including copy number variations, exon deletions, truncations, single nucleotide variants, and polymorphisms have been associated with intellectual disability, epilepsy, schizophrenia, language disorders, and autism. CNTNAP2, encoded by Cntnap2, is required for dendritic spine development and its absence causes disease-related phenotypes in mice. However, the mechanisms whereby CNTNAP2 regulates glutamatergic synapses are not known, and cellular phenotypes have not been investigated in Cntnap2 knockout neurons. Here we show that CNTNAP2 is present in dendritic spines, as well as axons and soma. Structured illumination superresolution microscopy reveals closer proximity to excitatory, rather than inhibitory synaptic markers. CNTNAP2 does not promote the formation of synapses and cultured neurons from Cntnap2 knockout mice do not show early defects in axon and dendrite outgrowth, suggesting that CNTNAP2 is not required at this stage. However, mature neurons from knockout mice show reduced spine density and levels of GluA1 subunits of AMPA receptors in spines. Unexpectedly, knockout neurons show large cytoplasmic aggregates of GluA1. Here we characterize, for the first time to our knowledge, synaptic phenotypes in Cntnap2 knockout neurons and reveal a novel role for CNTNAP2 in GluA1 trafficking. Taken together, our findings provide insight into the biological roles of CNTNAP2 and into the pathogenesis of CNTNAP2-associated neuropsychiatric disorders.
DOI: 10.1038/ncomms10884
2016
Cited 102 times
G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination
While the formation of myelin by oligodendrocytes is critical for the function of the central nervous system, the molecular mechanism controlling oligodendrocyte differentiation remains largely unknown. Here we identify G protein-coupled receptor 37 (GPR37) as an inhibitor of late-stage oligodendrocyte differentiation and myelination. GPR37 is enriched in oligodendrocytes and its expression increases during their differentiation into myelin forming cells. Genetic deletion of Gpr37 does not affect the number of oligodendrocyte precursor cells, but results in precocious oligodendrocyte differentiation and hypermyelination. The inhibition of oligodendrocyte differentiation by GPR37 is mediated by suppression of an exchange protein activated by cAMP (EPAC)-dependent activation of Raf-MAPK-ERK1/2 module and nuclear translocation of ERK1/2. Our data suggest that GPR37 regulates central nervous system myelination by controlling the transition from early-differentiated to mature oligodendrocytes.
DOI: 10.1038/s41583-020-00406-8
2020
Cited 95 times
Mechanisms of node of Ranvier assembly
DOI: 10.1371/journal.pone.0134572
2015
Cited 85 times
Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder
Autism spectrum disorder comprises several neurodevelopmental conditions presenting symptoms in social communication and restricted, repetitive behaviors. A major roadblock for drug development for autism is the lack of robust behavioral signatures predictive of clinical efficacy. To address this issue, we further characterized, in a uniform and rigorous way, mouse models of autism that are of interest because of their construct validity and wide availability to the scientific community. We implemented a broad behavioral battery that included but was not restricted to core autism domains, with the goal of identifying robust, reliable phenotypes amenable for further testing. Here we describe comprehensive findings from two known mouse models of autism, obtained at different developmental stages, using a systematic behavioral test battery combining standard tests as well as novel, quantitative, computer-vision based systems. The first mouse model recapitulates a deletion in human chromosome 16p11.2, found in 1% of individuals with autism. The second mouse model harbors homozygous null mutations in Cntnap2, associated with autism and Pitt-Hopkins-like syndrome. Consistent with previous results, 16p11.2 heterozygous null mice, also known as Del(7Slx1b-Sept1)4Aam weighed less than wild type littermates displayed hyperactivity and no social deficits. Cntnap2 homozygous null mice were also hyperactive, froze less during testing, showed a mild gait phenotype and deficits in the three-chamber social preference test, although less robust than previously published. In the open field test with exposure to urine of an estrous female, however, the Cntnap2 null mice showed reduced vocalizations. In addition, Cntnap2 null mice performed slightly better in a cognitive procedural learning test. Although finding and replicating robust behavioral phenotypes in animal models is a challenging task, such functional readouts remain important in the development of therapeutics and we anticipate both our positive and negative findings will be utilized as a resource for the broader scientific community.
DOI: 10.1016/j.neuron.2016.07.021
2016
Cited 79 times
Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination
Myelination occurs selectively around neuronal axons to increase the efficiency and velocity of action potentials. While oligodendrocytes are capable of myelinating permissive structures in the absence of molecular cues, structurally permissive neuronal somata and dendrites remain unmyelinated. Utilizing a purified spinal cord neuron-oligodendrocyte myelinating co-culture system, we demonstrate that disruption of dynamic neuron-oligodendrocyte signaling by chemical cross-linking results in aberrant myelination of the somatodendritic compartment of neurons. We hypothesize that an inhibitory somatodendritic cue is necessary to prevent non-axonal myelination. Using next-generation sequencing and candidate profiling, we identify neuronal junction adhesion molecule 2 (JAM2) as an inhibitory myelin-guidance molecule. Taken together, our results demonstrate that the somatodendritic compartment directly inhibits myelination and suggest a model in which broadly indiscriminate myelination is tailored by inhibitory signaling to meet local myelination requirements.
DOI: 10.1073/pnas.092128099
2002
Cited 159 times
Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene <i>kal-1</i>
Kallmann syndrome is a neurological disorder characterized by various behavioral and neuroanatomical defects. The X-linked form of this disease is caused by mutations in the KAL-1 gene, which codes for a secreted molecule that is expressed in restricted regions of the brain. Its molecular mechanism of action has thus far remained largely elusive. We show here that expression of the Caenorhabditis elegans homolog of KAL-1 in selected sensory and interneuron classes causes a highly penetrant, dosage-dependent, and cell autonomous axon-branching phenotype. In a different cellular context, heterologous C. elegans kal-1 expression causes a highly penetrant axon-misrouting phenotype. The axon-branching and -misrouting activities require different domains of the KAL-1 protein. In a genetic modifier screen we isolated several loci that either suppress or enhance the kal-1-induced axonal defects, one of which codes for an enzyme that modifies specific residues in heparan sulfate proteoglycans, namely heparan-6O-sulfotransferase. We hypothesize that KAL-1 binds by means of a heparan sulfate proteoglycan to its cognate receptor or other extracellular cues to induce axonal branching and axon misrouting.
DOI: 10.1074/jbc.m008089200
2001
Cited 158 times
Interaction of Serotonin 5-Hydroxytryptamine Type 2C Receptors with PDZ10 of the Multi-PDZ Domain Protein MUPP1
By using the yeast two-hybrid system, we previously isolated a cDNA clone encoding a novel member of the multivalent PDZ protein family called MUPP1 containing 13 PDZ domains. Here we report that the C terminus of the 5-hydroxytryptamine type 2C (5-HT<sub>2C</sub>) receptor selectively interacts with the 10th PDZ domain of MUPP1. Mutations in the extreme C-terminal SSV sequence of the 5-HT<sub>2C</sub> receptor confirmed that the S<i>X</i>V motif is critical for the interaction. Co-immunoprecipitations of MUPP1 and 5-HT<sub>2C</sub> receptors from transfected COS-7 cells and from rat choroid plexus verified this interaction <i>in vivo</i>. Immunocytochemistry revealed an S<i>X</i>V motif-dependent co-clustering of both proteins in transfected COS-7 cells as well as a colocalization in rat choroid plexus. A 5-HT<sub>2C</sub> receptor-dependent unmasking of a C-terminal vesicular stomatitis virus epitope of MUPP1 suggests that the interaction triggers a conformational change within the MUPP1 protein. Moreover, 5-HT<sub>2A</sub> and 5-HT<sub>2B</sub>, sharing the C-terminal E<i>X</i>(V/I)S<i>X</i>V sequence with 5-HT<sub>2C</sub> receptors, also bind MUPP1 PDZ domains <i>in vitro</i>. The highest <i>MUPP1</i> mRNA levels were found in all cerebral cortical layers, the hippocampus, the granular layer of the dentate gyrus, as well as the choroid plexus, where 5-HT<sub>2C</sub> receptors are highly enriched. We propose that MUPP1 may serve as a multivalent scaffold protein that selectively assembles and targets signaling complexes.
DOI: 10.1523/jneurosci.21-19-07568.2001
2001
Cited 136 times
Localization of Caspr2 in Myelinated Nerves Depends on Axon–Glia Interactions and the Generation of Barriers along the Axon
Cell recognition proteins of the contactin-associated protein (Caspr) family demarcate distinct domains along myelinated axons. Caspr is present at the paranodal junction formed between the axon and myelinating glial cells, whereas Caspr2 is localized and associates with K<sup>+</sup> channels at the adjacent juxtaparanodal region. Here we investigated the distribution of Caspr2 during development of peripheral nerves of normal and galactolipids-deficient [ceramide galactosyl transferase (CGT)−/−] mice. This mutant exhibits paranodal abnormalities, lacking all putative adhesion components of this junction, including Caspr, contactin, and neurofascin 155. In sciatic nerves of this mutant, Caspr2 was not found at the juxtaparanodal region but was concentrated instead at the paranodes with Kv1.2. Similar distribution of Caspr2 was found in the PNS of contactin knock-out mice, which also lack Caspr in their paranodes. During development of wild-type peripheral nerves, Caspr2 and Kv1.2 were initially detected at the paranodes before relocating to the adjacent juxtaparanodal region. This transition was not observed in CGT mice, where Caspr2 and Kv1.2 remained paranodal. Double labeling for Caspr and Caspr2 demonstrated that these two related proteins occupied mutually excluding domains along the axon and revealed the presence of both paranodal and internodal barrier-like structures that are delineated by Caspr. Finally, we found that the disruption of axon–glia contact in CGT−/− nerves also affects the localization of the cytoskeleton-associated protein 4.1B along the axon. Altogether, our results reveal a sequential appearance of members of the Caspr family at different domains along myelinated axons and suggest that the localization of Caspr2 may be controlled by the generation of Caspr-containing barriers along the axon.
DOI: 10.1083/jcb.200309147
2003
Cited 134 times
Caspr regulates the processing of contactin and inhibits its binding to neurofascin
Three cell adhesion molecules are present at the axoglial junctions that form between the axon and myelinating glia on either side of nodes of Ranvier. These include an axonal complex of contacin-associated protein (Caspr) and contactin, which was proposed to bind NF155, an isoform of neurofascin located on the glial paranodal loops. Here, we show that NF155 binds directly to contactin and that surprisingly, coexpression of Caspr inhibits this interaction. This inhibition reflects the association of Caspr with contactin during biosynthesis and the resulting expression of a low molecular weight (LMw), endoglycosidase H-sensitive isoform of contactin at the cell membrane, which remains associated with Caspr but is unable to bind NF155. Accordingly, deletion of Caspr in mice by gene targeting results in a shift from the LMw- to a HMw-contactin glycoform. These results demonstrate that Caspr regulates the intracellular processing and transport of contactin to the cell surface, thereby affecting its ability to interact with other cell adhesion molecules.
DOI: 10.1016/s0959-4388(98)80015-9
1998
Cited 125 times
Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase β
The growth and guidance of axons involves the recognition of complex environmental cues by receptor proteins on the surface of the growth cone and their interpretation by cellular machinery, leading to changes in cellular behaviour. Recent advances have demonstrated that the ligands for Eph receptor tyrosine kinases, the ephrins, act as repulsive axon guidance cues, and that Eph receptors are required for correct axonal navigation in vivo. Members of the receptor protein tyrosine phosphatase (RPTP) family also play important roles in axon guidance and growth. RPTP beta and Eph receptors interact with cell-surface-bound ligands, and there is increasing evidence that both transmembrane ephrins and contactin, a ligand for RPTP beta, may possess an intrinsic signalling function. Thus, the cell-contact-dependent interactions between these receptors and ligands may lead to initiation of bidirectional signals that regulate axonal growth and migration.
DOI: 10.1002/j.1460-2075.1991.tb07739.x
1991
Cited 116 times
Oncogenic forms of the neu/HER2 tyrosine kinase are permanently coupled to phospholipase C gamma.
The neu/HER2 proto-oncogene encodes a transmembrane tyrosine kinase homologous to receptors for polypeptide growth factors. The oncogenic potential for the presumed receptor is released through multiple genetic mechanisms including a specific point mutation, truncation at the extracellular domain and overexpression of the protooncogene. Here we show that all these modes of oncogenic activation result in a constitutively phosphorylated neu protein and an increase in tyrosine phosphorylation of a phosphatidylinositol-specific phospholipase (PLC gamma). The examined transforming neu/HER2 proteins, unlike the normal gene product, also co-immunoprecipitated with PLC gamma molecules. A kinase-defective mutant of a transforming neu failed to mediate both tyrosine phosphorylation and association with PLC gamma, suggesting direct interaction of the neu kinase with PLC gamma. This possibility was examined by employing a chimeric protein composed of the extracellular ligand-binding domain of the epidermal growth factor receptor and the neu cytoplasmic portion. The chimeric receptor mediated rapid ligand-dependent modification of PLC gamma on tyrosine residues. It also physically associated, in a ligand-dependent manner, with the phosphoinositidase. Based on the presented results we suggest that the mechanism of cellular transformation by the neu/HER2 receptor involves tyrosine phosphorylation and activation of PLC gamma.
DOI: 10.1523/jneurosci.4431-07.2008
2008
Cited 116 times
Postsynaptic Density-93 Clusters Kv1 Channels at Axon Initial Segments Independently of Caspr2
Postsynaptic density-93 (PSD-93)/Chapsyn-110 is a PDZ (PSD-95/Discs large/zona occludens-1) domain-containing membrane-associated guanylate kinase (MAGUK) that functions as a scaffold to assemble channels, receptors, and other signaling proteins at cell membranes. PSD-93 is highly enriched at synapses, but mice lacking this protein have no synaptic structural abnormalities, probably because of overlapping expression and redundancy with other MAGUKs. Consequently, the function of PSD-93 is not well understood. Here, we show that PSD-93, but not other MAGUKs, is enriched at the axon initial segment (AIS), where it colocalizes with Kv1.1, Kv1.2, Kv1.4, and Kvbeta2 subunit-containing K(+) channels, Caspr2, and TAG-1 (transient axonal glycoprotein-1). When coexpressed with Kv1 channels in heterologous cells, PSD-93 induces formation of large cell-surface clusters. Knockdown of PSD-93 in cultured hippocampal neurons by RNA interference disrupted Kv1 channel localization at the AIS. Similarly, PSD-93-/- mice failed to cluster Kv1 channels at the AIS of cortical and hippocampal neurons. In contrast, Caspr2, which mediates Kv1 channel clustering at the juxtaparanode, is not required for localization of Kv1 channels at the AIS. These results show PSD-93 mediates AIS accumulation of Kv1 channels independently of Caspr2.
DOI: 10.1523/jneurosci.3398-08.2008
2008
Cited 103 times
Multiple Molecular Interactions Determine the Clustering of Caspr2 and Kv1 Channels in Myelinated Axons
Clustering of Kv1 channels at the juxtaparanodal region (JXP) in myelinated axons depends on their association with the Caspr2/TAG-1 adhesion complex. The interaction between these channels and Caspr2 was suggested to depend on PDZ (PSD-95/Discs large/zona occludens-1) scaffolding proteins. Here, we show that at a subset of the JXP, PSD-93 colocalizes with Caspr2, K(+) channels and its related protein postsynaptic density protein-95 (PSD-95). The localization of PSD-93 and PSD-95 depends on the presence of Caspr2, as both scaffolding proteins failed to accumulate at the JXP in mice lacking either Caspr2 or TAG-1. In contrast, Caspr2 and K(+) channels still colocalized and associated in PSD-93, PSD-95 or double PSD-93/PSD-95 null mice. To directly evaluate the role of PDZ domain proteins in the function of Caspr2, we examined the ability of transgenic Caspr2 molecules lacking either their cytoplasmic domain (Caspr2dCT), or their PDZ-binding sequence (Caspr2dPDZ), to restore Kv1 channel clustering in Caspr2 null mice. We found that while Kv1 channels were distributed throughout internodes in nerves expressing Caspr2dCT, they were clustered at the JXP in axons expressing a full-length Caspr2 (Caspr2FL) or the Caspr2dPDZ transgene. Further proteomic analysis revealed that Caspr2 interacts with a distinct set of scaffolding proteins through its PDZ- and protein 4.1-binding sequences. These results demonstrate that while the molecular assembly of the JXP requires the cytoplasmic domain of Caspr2, its carboxy-terminal PDZ-binding motif is dispensable for Kv1 channel clustering. This mechanism is clearly distinct from the one operating at the axon initial segment, which requires PSD-93 for Kv1 channel clustering.
DOI: 10.1523/jneurosci.5225-09.2010
2010
Cited 100 times
Organization of Myelinated Axons by Caspr and Caspr2 Requires the Cytoskeletal Adapter Protein 4.1B
Caspr and Caspr2 regulate the formation of distinct axonal domains around the nodes of Ranvier. Caspr is required for the generation of a membrane barrier at the paranodal junction (PNJ), whereas Caspr2 serves as a membrane scaffold that clusters Kv1 channels at the juxtaparanodal region (JXP). Both Caspr and Caspr2 interact with protein 4.1B, which may link the paranodal and juxtaparanodal adhesion complexes to the axonal cytoskeleton. To determine the role of protein 4.1B in the function of Caspr proteins, we examined the ability of transgenic Caspr and Caspr2 mutants lacking their 4.1-binding sequence (d4.1) to restore Kv1 channel clustering in Caspr- and Caspr2-null mice, respectively. We found that Caspr-d4.1 was localized to the PNJ and is able to recruit the paranodal adhesion complex components contactin and NF155 to this site. Nevertheless, in axons expressing Caspr-d4.1, Kv1 channels were often detected at paranodes, suggesting that the interaction of Caspr with protein 4.1B is necessary for the generation of an efficient membrane barrier at the PNJ. We also found that the Caspr2-d4.1 transgene did not accumulate at the JXP, even though it was targeted to the axon, demonstrating that the interaction with protein 4.1B is required for the accumulation of Caspr2 and Kv1 channels at the juxtaparanodal axonal membrane. In accordance, we show that Caspr2 and Kv1 channels are not clustered at the JXP in 4.1B-null mice. Our results thus underscore the functional importance of protein 4.1B in the organization of peripheral myelinated axons.
DOI: 10.1083/jcb.200612139
2007
Cited 97 times
Secreted gliomedin is a perinodal matrix component of peripheral nerves
The interaction between gliomedin and the axonodal cell adhesion molecules (CAMs) neurofascin and NrCAM induces the clustering of Na(+) channels at the nodes of Ranvier. We define new interactions of gliomedin that are essential for its clustering activity. We show that gliomedin exists as both transmembrane and secreted forms that are generated by proteolytic cleavage of the protein, and that only the latter is detected at the nodes of Ranvier. The secreted extracellular domain of gliomedin binds to Schwann cells and is incorporated into the extracellular matrix (ECM) in a heparin-dependent manner, suggesting the involvement of heparan sulfate proteoglycans (HSPGs). Furthermore, we show that the N-terminal region of gliomedin serves as an oligomerization domain that mediates self-association of the molecule, which is required for its binding to neurofascin and NrCAM. Our results indicate that the deposition of gliomedin multimers at the nodal gap by binding to HSPGs facilitates the clustering of the axonodal CAMs and Na(+) channels.
DOI: 10.1523/jneurosci.4317-05.2006
2006
Cited 96 times
Ermin, A Myelinating Oligodendrocyte-Specific Protein That Regulates Cell Morphology
Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, thereby allowing rapid propagation of action potentials. Despite the considerable clinical importance of myelination, little is known about the molecular mechanisms that enable oligodendrocytes to generate their specialized membrane wrapping. Here, we used microarray expression profiling of oligodendrocyte-ablated mutant mice to identify new glial molecules that are involved in CNS myelination. This effort resulted in the identification of Ermin, a novel cytoskeletal molecule that is exclusively expressed by oligodendrocytes. Ermin appears at a late stage during myelination, and in the mature nerves, it is localized to the outer cytoplasmic lip of the myelin sheath and the paranodal loops. In cultured oligodendrocytes, Ermin becomes visible in well differentiated MBP-positive cells, where it is concentrated at the tip of F-actin-rich processes (termed "Ermin spikes"). Ectopic expression of Ermin, but not of a mutant protein lacking its actin-binding domain, induced the formation of numerous cell protrusions and a pronounced change in cell morphology. Our results demonstrate that Ermin is a novel marker of myelinating oligodendroglia and suggest that it plays a role in cytoskeletal rearrangements during the late wrapping and/or compaction phases of myelinogenesis.
DOI: 10.1073/pnas.0904336106
2009
Cited 96 times
The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development
The nonreceptor tyrosine phosphatase Shp2 (PTPN11) has been implicated in tyrosine kinase, cytokine, and integrin receptor signaling. We show here that conditional mutation of Shp2 in neural crest cells and in myelinating Schwann cells resulted in deficits in glial development that are remarkably similar to those observed in mice mutant for Neuregulin-1 (Nrg1) or the Nrg1 receptors, ErbB2 and ErbB3. In cultured Shp2 mutant Schwann cells, Nrg1-evoked cellular responses like proliferation and migration were virtually abolished, and Nrg1-dependent intracellular signaling was altered. Pharmacological inhibition of Src family kinases mimicked all cellular and biochemical effects of the Shp2 mutation, implicating Src as a primary Shp2 target during Nrg1 signaling. Together, our genetic and biochemical analyses demonstrate that Shp2 is an essential component in the transduction of Nrg1/ErbB signals.
DOI: 10.1083/jcb.201010013
2011
Cited 74 times
N-WASP is required for membrane wrapping and myelination by Schwann cells
During peripheral nerve myelination, Schwann cells sort larger axons, ensheath them, and eventually wrap their membrane to form the myelin sheath. These processes involve extensive changes in cell shape, but the exact mechanisms involved are still unknown. Neural Wiskott–Aldrich syndrome protein (N-WASP) integrates various extracellular signals to control actin dynamics and cytoskeletal reorganization through activation of the Arp2/3 complex. By generating mice lacking N-WASP in myelinating Schwann cells, we show that N-WASP is crucial for myelination. In N-WASP–deficient nerves, Schwann cells sort and ensheath axons, but most of them fail to myelinate and arrest at the promyelinating stage. Yet, a limited number of Schwann cells form unusually short internodes, containing thin myelin sheaths, with the occasional appearance of myelin misfoldings. These data suggest that regulation of actin filament nucleation in Schwann cells by N-WASP is crucial for membrane wrapping, longitudinal extension, and myelination.
DOI: 10.1016/j.neuron.2013.10.060
2014
Cited 64 times
Neuronal Ig/Caspr Recognition Promotes the Formation of Axoaxonic Synapses in Mouse Spinal Cord
Inhibitory microcircuits are wired with a precision that underlies their complex regulatory roles in neural information processing. In the spinal cord, one specialized class of GABAergic interneurons (GABApre) mediates presynaptic inhibitory control of sensory-motor synapses. The synaptic targeting of these GABAergic neurons exhibits an absolute dependence on proprioceptive sensory terminals, yet the molecular underpinnings of this specialized axoaxonic organization remain unclear. Here, we show that sensory expression of an NB2 (Contactin5)/Caspr4 coreceptor complex, together with spinal interneuron expression of NrCAM/CHL1, directs the high-density accumulation of GABAergic boutons on sensory terminals. Moreover, genetic elimination of NB2 results in a disproportionate stripping of inhibitory boutons from high-density GABApre-sensory synapses, suggesting that the preterminal axons of GABApre neurons compete for access to individual sensory terminals. Our findings define a recognition complex that contributes to the assembly and organization of a specialized GABAergic microcircuit.
DOI: 10.1523/jneurosci.0571-13.2013
2013
Cited 63 times
Genetic Deletion of Cadm4 Results in Myelin Abnormalities Resembling Charcot-Marie-Tooth Neuropathy
The interaction between myelinating Schwann cells and the axons they ensheath is mediated by cell adhesion molecules of the Cadm/Necl/SynCAM family. This family consists of four members: Cadm4/Necl4 and Cadm1/Necl2 are found in both glia and axons, whereas Cadm2/Necl3 and Cadm3/Necl1 are expressed by sensory and motor neurons. By generating mice lacking each of the Cadm genes, we now demonstrate that Cadm4 plays a role in the establishment of the myelin unit in the peripheral nervous system. Mice lacking Cadm4 (<i>PGK-Cre/Cadm4<sup>fl/fl</sup></i>), but not Cadm1, Cadm2, or Cadm3, develop focal hypermyelination characterized by tomacula and myelin outfoldings, which are the hallmark of several Charcot-Marie-Tooth neuropathies. The absence of Cadm4 also resulted in abnormal axon–glial contact and redistribution of ion channels along the axon. These neuropathological features were also found in transgenic mice expressing a dominant-negative mutant of Cadm4 lacking its cytoplasmic domain in myelinating glia Tg(<i>mbp-Cadm4dCT</i>), as well as in mice lacking Cadm4 specifically in Schwann cells (<i>DHH-Cre/Cadm4<sup>fl/fl</sup></i>). Consistent with these abnormalities, both <i>PGK-Cre/Cadm4<sup>fl/fl</sup> and</i> Tg(<i>mbp-Cadm4dCT</i>) mice exhibit impaired motor function and slower nerve conduction velocity. These findings indicate that Cadm4 regulates the growth of the myelin unit and the organization of the underlying axonal membrane.
DOI: 10.1093/cercor/bhx341
2017
Cited 63 times
Loss of<i>Cntnap2</i>Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior
Contactin-associated protein-like 2 (Caspr2) is found at the nodes of Ranvier and has been associated with physiological properties of white matter conductivity. Genetic variation in CNTNAP2, the gene encoding Caspr2, has been linked to several neurodevelopmental conditions, yet pathophysiological effects of CNTNAP2 mutations on axonal physiology and brain myelination are unknown. Here, we have investigated mouse mutants for Cntnap2 and found profound deficiencies in the clustering of Kv1-family potassium channels in the juxtaparanodes of brain myelinated axons. These deficits are associated with a change in the waveform of axonal action potentials and increases in postsynaptic excitatory responses. We also observed that the normal process of myelination is delayed in Cntnap2 mutant mice. This later phenotype is a likely modulator of the developmental expressivity of the stereotyped motor behaviors that characterize Cntnap2 mutant mice. Altogether, our results reveal a mechanism linked to white matter conductivity through which mutation of CNTNAP2 may affect neurodevelopmental outcomes.
DOI: 10.7554/elife.21392
2017
Cited 61 times
The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier
A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.
DOI: 10.1016/j.neuron.2018.11.032
2019
Cited 50 times
Axoglial Adhesion by Cadm4 Regulates CNS Myelination
The initiation of axoglial contact is considered a prerequisite for myelination, yet the role cell adhesion molecules (CAMs) play in mediating such interactions remains unclear. To examine the function of axoglial CAMs, we tested whether enhanced CAM-mediated adhesion between OLs and neurons could affect myelination. Here we show that increased expression of a membrane-bound extracellular domain of Cadm4 (Cadm4dCT) in cultured oligodendrocytes results in the production of numerous axoglial contact sites that fail to elongate and generate mature myelin. Transgenic mice expressing Cadm4dCT were hypomyelinated and exhibit multiple myelin abnormalities, including myelination of neuronal somata. These abnormalities depend on specific neuron-glial interaction as they were not observed when these OLs were cultured alone, on nanofibers, or on neurons isolated from mice lacking the axonal receptors of Cadm4. Our results demonstrate that tightly regulated axon-glia adhesion is essential for proper myelin targeting and subsequent membrane wrapping and lateral extension.
DOI: 10.1038/s41467-019-12789-z
2019
Cited 46 times
Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS
Central nervous system myelin is a multilayered membrane produced by oligodendrocytes to increase neural processing speed and efficiency, but the molecular mechanisms underlying axonal selection and myelin wrapping are unknown. Here, using combined morphological and molecular analyses in mice and zebrafish, we show that adhesion molecules of the paranodal and the internodal segment work synergistically using overlapping functions to regulate axonal interaction and myelin wrapping. In the absence of these adhesive systems, axonal recognition by myelin is impaired with myelin growing on top of previously myelinated fibers, around neuronal cell bodies and above nodes of Ranvier. In addition, myelin wrapping is disturbed with the leading edge moving away from the axon and in between previously formed layers. These data show how two adhesive systems function together to guide axonal ensheathment and myelin wrapping, and provide a mechanistic understanding of how the spatial organization of myelin is achieved.
DOI: 10.1016/s0959-4388(02)00370-7
2002
Cited 110 times
Development of nodes of Ranvier
The architecture and function of the nodes of Ranvier depend on several specialized cell contacts between the axon and myelinating glial cells. These sites contain highly organized multimolecular complexes of ion channels and cell adhesion molecules, closely connected with the cytoskeleton. Recent findings are beginning to reveal how this organization is achieved during the development of myelinated nerves. The role of membrane proteins involved in axoglial interactions and of associated cytoplasmic molecules is being elucidated, while studies of mutant mice have underlined the importance of glial cells and the specific role of axonal proteins in the organization of axonal domains.
DOI: 10.1023/a:1007009613484
1999
Cited 109 times
Myelinating Schwann cells determine the internodal localization of Kv1.1, Kv1.2, Kvbeta2, and Caspr.
DOI: 10.1023/a:1007057512576
1999
Cited 107 times
K+ channel distribution and clustering in developing and hypomyelinated axons of the optic nerve.
DOI: 10.1016/s0968-0004(98)01195-5
1998
Cited 105 times
Multi-ligand interactions with receptor-like protein tyrosine phosphatase β: implications for intercellular signaling
Receptor-like protein tyrosine phosphatase β (RPTPβ) shows structural and functional similarity to cell adhesion molecules (CAMs). It binds to several neuronal CAMs and extracellular matrix (ECM) proteins that combine to form cell-recognition complexes. Here, the authors discuss the implications of such complexes for intercellular signaling, and the regulation of RPTP activity by cell–cell and cell–ECM contact.
DOI: 10.1523/jneurosci.22-05-01726.2002
2002
Cited 105 times
Genetic Dysmyelination Alters the Molecular Architecture of the Nodal Region
We have examined the molecular organization of axons in the spinal cords of myelin-deficient (md) rats, which have profound CNS dysmyelination associated with oligodendrocyte cell death. Although myelin sheaths are rare, most large axons are at least partially surrounded by oligodendrocyte processes. At postnatal day 7 (P7), almost all node-like clusters of voltage-gated Na+ channels and ankyrinG are adjacent to axonal segments ensheathed by oligodendrocytes, but at P21, many node-like clusters are found in axonal segments that lack oligodendrocyte ensheathment. In P21 wild-type (WT) rats, the voltage-gated Na+ channels Na(v)1.2, Na(v)1.6, and Na(v)1.8, are found in different subpopulations of myelinated axons, and md rats have a similar distribution. The known molecular components of paranodes--contactin, Caspr, and neurofascin 155--are not clustered in md spinal cords, and no septate-like junctions between oligodendrocyte processes and axons are found by electron microscopy. Furthermore, Kv1.1 and Kv1.2 K+ channels are not spatially segregated from the node-like clusters of Na+ channels in md rats, in contrast to their WT littermates. These results suggest the following: node-like clusters of voltage-gated Na+ channels and ankyrinG form adjacent to ensheathed axonal segments even in the absence of a myelin sheath; these clusters persist after oligodendrocyte cell death; dysmyelination does not alter the expression of different nodal of voltage-gated Na+ channels; the absence of paranodes results in the mislocalization of neurofascin155, contactin, and Caspr, and the aberrant localization of Kv1.1 and Kv1.2.
DOI: 10.1083/jcb.200203050
2002
Cited 94 times
Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr
An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr–contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr–contactin chimera from the cell surface. These results suggest that Caspr serves as a “transmembrane scaffold” that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.
DOI: 10.1006/mcne.2002.1110
2002
Cited 89 times
Caspr3 and Caspr4, Two Novel Members of the Caspr Family Are Expressed in the Nervous System and Interact with PDZ Domains
The NCP family of cell-recognition molecules represents a distinct subgroup of the neurexins that includes Caspr and Caspr2, as well as Drosophila Neurexin-IV and axotactin. Here, we report the identification of Caspr3 and Caspr4, two new NCPs expressed in nervous system. Caspr3 was detected along axons in the corpus callosum, spinal cord, basket cells in the cerebellum and in peripheral nerves, as well as in oligodendrocytes. In contrast, expression of Caspr4 was more restricted to specific neuronal subpopulations in the olfactory bulb, hippocampus, deep cerebellar nuclei, and the substantia nigra. Similar to the neurexins, the cytoplasmic tails of Caspr3 and Caspr4 interacted differentially with PDZ domain-containing proteins of the CASK/Lin2-Veli/Lin7-Mint1/Lin10 complex. The structural organization and distinct cellular distribution of Caspr3 and Caspr4 suggest a potential role of these proteins in cell recognition within the nervous system.
DOI: 10.1016/s0021-9258(19)49834-7
1992
Cited 88 times
Regulated coupling of the Neu receptor to phosphatidylinositol 3'-kinase and its release by oncogenic activation.
The neu protooncogene encodes a tyrosine kinase receptor that is involved in the regulation of normal growth and malignant transformation.To circumvent
DOI: 10.1111/j.1471-4159.2006.04170.x
2006
Cited 84 times
Synaptic scaffolding molecule (S‐SCAM) membrane‐associated guanylate kinase with inverted organization (MAGI)‐2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons
Synaptic scaffolding molecule (S-SCAM) is a synaptic protein, which harbors five or six PSD-95/Discs large/ZO-1 (PDZ), a guanylate kinase and two WW domains. It interacts with NMDA receptor subunits, neuroligin and beta-catenin, and is involved in the accumulation of neuroligin at excitatory synapses. In this study, we have demonstrated S-SCAM is localized at inhibitory synapses in rat primary cultured hippocampal neurons. We have identified beta-dystroglycan (beta-DG) as a binding partner for S-SCAM at inhibitory synapses. WW domains of S-SCAM bind to three sequences of beta-DG. We have also revealed that S-SCAM can interact with neuroligin 2, which is known to be exclusively localized at inhibitory synapses. The WW domains and the second PDZ domain of S-SCAM are involved in the interaction with neuroligin 2. Beta-DG, neuroligin 2 and S-SCAM form a tripartite complex in vitro. Neuroligin 2 is detected in the immunoprecipitates by anti-beta-DG antibody from rat brain. S-SCAM, beta-DG and neuroligin 2 are partially co-localized in rat hippocampal neurons. These data suggest that S-SCAM is associated with beta-DG and neuroligin 2 at inhibitory synapses, and functions as a linker between the dystrophin glycoprotein complex and the neurexin-neuroligin complex.
DOI: 10.1523/jneurosci.4752-13.2014
2014
Cited 56 times
Long-Term Maintenance of Na<sup>+</sup>Channels at Nodes of Ranvier Depends on Glial Contact Mediated by Gliomedin and NrCAM
Clustering of Na(+) channels at the nodes of Ranvier is coordinated by myelinating glia. In the peripheral nervous system, axoglial contact at the nodes is mediated by the binding of gliomedin and glial NrCAM to axonal neurofascin 186 (NF186). This interaction is crucial for the initial clustering of Na(+) channels at heminodes. As a result, it is not clear whether continued axon-glial contact at nodes of Ranvier is required to maintain these channels at the nodal axolemma. Here, we report that, in contrast to mice that lack either gliomedin or NrCAM, absence of both molecules (and hence the glial clustering signal) resulted in a gradual loss of Na(+) channels and other axonal components from the nodes, the formation of binary nodes, and dysregulation of nodal gap length. Therefore, these mice exhibit neurological abnormalities and slower nerve conduction. Disintegration of the nodes occurred in an orderly manner, starting with the disappearance of neurofascin 186, followed by the loss of Na(+) channels and ankyrin G, and then βIV spectrin, a sequence that reflects the assembly of nodes during development. Finally, the absence of gliomedin and NrCAM led to the invasion of the outermost layer of the Schwann cell membrane beyond the nodal area and the formation of paranodal-like junctions at the nodal gap. Our results reveal that axon-glial contact mediated by gliomedin, NrCAM, and NF186 not only plays a role in Na(+) channel clustering during development, but also contributes to the long-term maintenance of Na(+) channels at nodes of Ranvier.
DOI: 10.1073/pnas.1019600108
2011
Cited 56 times
Schwann cell spectrins modulate peripheral nerve myelination
During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron-glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and βII spectrin are polarized in Schwann cells and colocalize with signaling molecules known to modulate myelination in vitro. Silencing expression of these spectrins inhibited myelination in vitro, and remyelination in vivo. Furthermore, myelination was disrupted in motor nerves of zebrafish lacking αII spectrin. Finally, we demonstrate that loss of spectrin significantly reduces both F-actin in the Schwann cell cytoskeleton and the Nectin-like protein, Necl4, at the contact site between Schwann cells and axons. Therefore, we propose αII and βII spectrin in Schwann cells integrate the neuron-glia interactions mediated by membrane proteins into the actin-dependent cytoskeletal rearrangements necessary for myelination.
DOI: 10.1016/j.stemcr.2014.05.011
2014
Cited 51 times
Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors
Recent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs), a dermally derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from neural crest-derived facial and mesodermally derived foreskin dermis and the foreskin SKPs can make myelinating Schwann cells. Thus, nonneural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally defined lineage boundaries are more flexible than widely thought.
DOI: 10.1016/j.mcn.2015.11.012
2016
Cited 47 times
Expression of Cntnap2 (Caspr2) in multiple levels of sensory systems
Genome-wide association studies and copy number variation analyses have linked contactin associated protein 2 (Caspr2, gene name Cntnap2) with autism spectrum disorder (ASD). In line with these findings, mice lacking Caspr2 (Cntnap2−/−) were shown to have core autism-like deficits including abnormal social behavior and communication, and behavior inflexibility. However the role of Caspr2 in ASD pathogenicity remains unclear. Here we have generated a new Caspr2:tau-LacZ knock-in reporter line (Cntnap2tlacz/tlacz), which enabled us to monitor the neuronal circuits in the brain expressing Caspr2. We show that Caspr2 is expressed in many brain regions and produced a comprehensive report of Caspr2 expression. Moreover, we found that Caspr2 marks all sensory modalities: it is expressed in distinct brain regions involved in different sensory processings and is present in all primary sensory organs. Olfaction-based behavioral tests revealed that mice lacking Caspr2 exhibit abnormal response to sensory stimuli and lack preference for novel odors. These results suggest that loss of Caspr2 throughout the sensory system may contribute to the sensory manifestations frequently observed in ASD.
DOI: 10.1093/brain/awv204
2015
Cited 45 times
Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the proteasome. Our findings identify involvement of myelin-associated glycoprotein in this family with a disorder affecting the central and peripheral nervous system, and suggest that loss of the protein function is responsible for the unique clinical phenotype.
DOI: 10.1083/jcb.201906099
2019
Cited 35 times
Coordinated internodal and paranodal adhesion controls accurate myelination by oligodendrocytes
Oligodendrocyte–axon contact is mediated by several cell adhesion molecules (CAMs) that are positioned at distinct sites along the myelin unit, yet their role during myelination remains unclear. Cadm4 and its axonal receptors, Cadm2 and Cadm3, as well as myelin-associated glycoprotein (MAG), are enriched at the internodes below the compact myelin, whereas NF155, which binds the axonal Caspr/contactin complex, is located at the paranodal junction that is formed between the axon and the terminal loops of the myelin sheath. Here we report that Cadm4-, MAG-, and Caspr-mediated adhesion cooperate during myelin membrane ensheathment. Genetic deletion of either Cadm4 and MAG or Cadm4 and Caspr resulted in the formation of multimyelinated axons due to overgrowth of the myelin away from the axon and the forming paranodal junction. Consequently, these mice displayed paranodal loops either above or underneath compact myelin. Our results demonstrate that accurate placement of the myelin sheath by oligodendrocytes requires the coordinated action of internodal and paranodal CAMs.
DOI: 10.1093/brain/awab174
2021
Cited 23 times
Neuronal deletion of <i>Wwox</i>, associated with WOREE syndrome, causes epilepsy and myelin defects
Abstract WWOX-related epileptic encephalopathy (WOREE) syndrome caused by human germline bi-allelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2–4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.
DOI: 10.1083/jcb.202211031
2023
Cited 5 times
LGI3/2–ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period
Along myelinated axons, Shaker-type potassium channels (Kv1) accumulate at high density in the juxtaparanodal region, directly adjacent to the paranodal axon-glia junctions that flank the nodes of Ranvier. However, the mechanisms that control the clustering of Kv1 channels, as well as their function at this site, are still poorly understood. Here we demonstrate that axonal ADAM23 is essential for both the accumulation and stability of juxtaparanodal Kv1 complexes. The function of ADAM23 is critically dependent on its interaction with its extracellular ligands LGI2 and LGI3. Furthermore, we demonstrate that juxtaparanodal Kv1 complexes affect the refractory period, thus enabling high-frequency burst firing of action potentials. Our findings not only reveal a previously unknown molecular pathway that regulates Kv1 channel clustering, but they also demonstrate that the juxtaparanodal Kv1 channels that are concealed below the myelin sheath, play a significant role in modifying axonal physiology.
DOI: 10.1038/s41467-023-41273-y
2023
Cited 5 times
Experimental and theoretical model for the origin of coiling of cellular protrusions around fibers
Abstract Protrusions at the leading-edge of a cell play an important role in sensing the extracellular cues during cellular spreading and motility. Recent studies provided indications that these protrusions wrap (coil) around the extracellular fibers. However, the physics of this coiling process, and the mechanisms that drive it, are not well understood. We present a combined theoretical and experimental study of the coiling of cellular protrusions on fibers of different geometry. Our theoretical model describes membrane protrusions that are produced by curved membrane proteins that recruit the protrusive forces of actin polymerization, and identifies the role of bending and adhesion energies in orienting the leading-edges of the protrusions along the azimuthal (coiling) direction. Our model predicts that the cell’s leading-edge coils on fibers with circular cross-section (above some critical radius), but the coiling ceases for flattened fibers of highly elliptical cross-section. These predictions are verified by 3D visualization and quantitation of coiling on suspended fibers using Dual-View light-sheet microscopy (diSPIM). Overall, we provide a theoretical framework, supported by experiments, which explains the physical origin of the coiling phenomenon.
DOI: 10.1038/s41467-023-42273-8
2023
Cited 5 times
Antibody-directed extracellular proximity biotinylation reveals that Contactin-1 regulates axo-axonic innervation of axon initial segments
Abstract Axon initial segment (AIS) cell surface proteins mediate key biological processes in neurons including action potential initiation and axo-axonic synapse formation. However, few AIS cell surface proteins have been identified. Here, we use antibody-directed proximity biotinylation to define the cell surface proteins in close proximity to the AIS cell adhesion molecule Neurofascin. To determine the distributions of the identified proteins, we use CRISPR-mediated genome editing for insertion of epitope tags in the endogenous proteins. We identify Contactin-1 (Cntn1) as an AIS cell surface protein. Cntn1 is enriched at the AIS through interactions with Neurofascin and NrCAM. We further show that Cntn1 contributes to assembly of the AIS extracellular matrix, and regulates AIS axo-axonic innervation by inhibitory basket cells in the cerebellum and inhibitory chandelier cells in the cortex.
DOI: 10.1083/jcb.200206024
2002
Cited 81 times
Clustering of neuronal potassium channels is independent of their interaction with PSD-95
Voltage-dependent potassium channels regulate membrane excitability and cell-cell communication in the mammalian nervous system, and are found highly localized at distinct neuronal subcellular sites. Kv1 (mammalian Shaker family) potassium channels and the neurexin Caspr2, both of which contain COOH-terminal PDZ domain binding peptide motifs, are found colocalized at high density at juxtaparanodes flanking nodes of Ranvier of myelinated axons. The PDZ domain-containing protein PSD-95, which clusters Kv1 potassium channels in heterologous cells, has been proposed to play a major role in potassium channel clustering in mammalian neurons. Here, we show that PSD-95 colocalizes precisely with Kv1 potassium channels and Caspr2 at juxtaparanodes, and that a macromolecular complex of Kv1 channels and PSD-95 can be immunopurified from mammalian brain and spinal cord. Surprisingly, we find that the high density clustering of Kv1 channels and Caspr2 at juxtaparanodes is normal in a mutant mouse lacking juxtaparanodal PSD-95, and that the indirect interaction between Kv1 channels and Caspr2 is maintained in these mutant mice. These data suggest that the primary function of PSD-95 at juxtaparanodes lies outside of its accepted role in mediating the high density clustering of Kv1 potassium channels at these sites.
DOI: 10.1242/jcs.00302
2003
Cited 73 times
Junctional protein MAGI-3 interacts with receptor tyrosine phosphataseβ (RPTPβ) and tyrosine-phosphorylated proteins
Receptor protein tyrosine phosphatase beta (RPTP beta) mediates cell-cell and cell-matrix interactions. By searching for intracellular proteins that interact with the cytoplasmic region of this phosphatase using the two-hybrid method, we identified several proteins containing PDZ domains. One of these proteins, MAGI-3, contains a guanylate-kinase-like region, six PDZ and two WW domains. The interaction between RPTP beta and MAGI-3 was confirmed by co-immunoprecipitation and pulldown experiments in transfected cells. Immunofluorescence and immunoelectron microscopy revealed that MAGI-3 is concentrated in specific sites at the plasma membrane and in the nucleus. In epithelial cells, MAGI-3 was localized with ZO-1 and cingulin at tight junctions, whereas in primary cultured astrocytes it was found in E-cadherin-based cell-cell contacts and in focal adhesion sites. Although MAGI-3 itself was not phosphorylated on tyrosine residues, it became associated with tyrosine-phosphorylated proteins following a short treatment of the cells with vanadate. In glioblastoma SF763T cells MAGI-3 was associated with a tyrosine-phosphorylated protein with the apparent molecular weight of 130 kDa, whereas in Caco2 cells it was associated with a 90 kDa protein. Finally, we show that p130 served as a substrate for RPTP beta and that its dephosphorylation required the C-terminal sequence of the phosphatase, which mediated the interaction with MAGI-3. These findings suggest a possible role for MAGI-3 as a scaffolding molecule that links receptor tyrosine phosphatase with its substrates at the plasma membrane.
DOI: 10.1021/bi00228a027
1991
Cited 71 times
Biochemical analysis of the ligand for the neu oncogenic receptor
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTBiochemical analysis of the ligand for the neu oncogenic receptorYosef Yarden and Elior PelesCite this: Biochemistry 1991, 30, 14, 3543–3550Publication Date (Print):April 1, 1991Publication History Published online1 May 2002Published inissue 1 April 1991https://doi.org/10.1021/bi00228a027RIGHTS & PERMISSIONSArticle Views46Altmetric-Citations56LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit PDF (3 MB) Get e-Alerts Get e-Alerts
DOI: 10.1016/j.gep.2010.10.008
2011
Cited 48 times
The neurexin superfamily of Caenorhabditis elegans
The neurexin superfamily is a group of transmembrane molecules mediating cell-cell contacts and generating specialized membranous domains in polarized epithelial and nerves cells. We describe here the domain organization and expression of the entire, core neurexin superfamily in the nematode Caenorhabditis elegans, which is composed of three family members. One of the superfamily members, nrx-1, is an ortholog of vertebrate neurexin, the other two, itx-1 and nlr-1, are orthologs of the Caspr subfamily of neurexin-like genes. Based on reporter gene analysis, we find that nrx-1 is exclusively expressed in most if not all cells of the nervous system and localizes to presynaptic specializations. itx-1 and nrx-1 reporter genes are expressed in non-overlapping patterns within and outside the nervous system. ITX-1 protein co-localizes with β-G-spectrin to a subapical domain within intestinal cells. These studies provide a starting point for further functional analysis of this family of proteins.
DOI: 10.1083/jcb.201111127
2012
Cited 43 times
The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves
Myelinating Schwann cells regulate the localization of ion channels on the surface of the axons they ensheath. This function depends on adhesion complexes that are positioned at specific membrane domains along the myelin unit. Here we show that the precise localization of internodal proteins depends on the expression of the cytoskeletal adapter protein 4.1G in Schwann cells. Deletion of 4.1G in mice resulted in aberrant distribution of both glial adhesion molecules and axonal proteins that were present along the internodes. In wild-type nerves, juxtaparanodal proteins (i.e., Kv1 channels, Caspr2, and TAG-1) were concentrated throughout the internodes in a double strand that flanked paranodal junction components (i.e., Caspr, contactin, and NF155), and apposes the inner mesaxon of the myelin sheath. In contrast, in 4.1G(-/-) mice, these proteins "piled up" at the juxtaparanodal region or aggregated along the internodes. These findings suggest that protein 4.1G contributes to the organization of the internodal axolemma by targeting and/or maintaining glial transmembrane proteins along the axoglial interface.
DOI: 10.1016/j.conb.2013.06.003
2013
Cited 40 times
The making of a node: a co-production of neurons and glia
Nodes of Ranvier are specialized axonal domains formed in response to a glial signal. Recent research advances have revealed that both CNS and PNS nodes form by several overlapping molecular mechanisms. However, the precise nature of these mechanisms and the hierarchy existing between them is considerably different in CNS versus PNS nodes. Namely, the Schwann cells of the PNS, which directly contact the nodal axolemma, secrete proteins that cluster axonodal components at the edges of the growing myelin segment. In contrast, the formation of CNS nodes, which are not contacted by the myelinating glia, is surprisingly similar to the assembly of the axon initial segment and depends largely on axonal diffusion barriers.
DOI: 10.1523/jneurosci.1725-14.2014
2014
Cited 39 times
Loss of Glial Neurofascin155 Delays Developmental Synapse Elimination at the Neuromuscular Junction
Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo-glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system.
DOI: 10.1523/jneurosci.3369-14.2014
2014
Cited 36 times
Caspr and Caspr2 Are Required for Both Radial and Longitudinal Organization of Myelinated Axons
In myelinated peripheral axons, Kv1 potassium channels are clustered at the juxtaparanodal region and at an internodal line located along the mesaxon and below the Schmidt-Lanterman incisures. This polarized distribution is controlled by Schwann cells and requires specific cell adhesion molecules (CAMs). The accumulation of Kv1 channels at the juxtaparanodal region depends on the presence of Caspr2 at this site, as well as on the presence of Caspr at the adjacent paranodal junction. However, the localization of these channels along the mesaxonal internodal line still persists in the absence of each one of these CAMs. By generating mice lacking both Caspr and Caspr2 (caspr(-/-)/caspr2(-/-)), we now reveal compensatory functions of the two proteins in the organization of the axolemma. Although Kv1 channels are clustered along the inner mesaxon and in a circumferential ring below the incisures in the single mutants, in sciatic nerves of caspr(-/-)/caspr2(-/-) mice, these channels formed large aggregates that were dispersed along the axolemma, demonstrating that internodal localization of Kv1 channels requires either Caspr or Caspr2. Furthermore, deletion of both Caspr and Caspr2 also resulted in widening of the nodes of Ranvier, suggesting that Caspr2 (which is present at paranodes in the absence of Caspr) can partially compensate for the barrier function of Caspr at this site even without the formation of a distinct paranodal junction. Our results indicate that Caspr and Caspr2 are required for the organization of the axolemma both radially, manifested as the mesaxonal line, and longitudinally, demarcated by the nodal domains.
DOI: 10.1083/jcb.201403111
2015
Cited 36 times
Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin
Fast neural conduction requires accumulation of Na(+) channels at nodes of Ranvier. Dedicated adhesion molecules on myelinating cells and axons govern node organization. Among those, specific laminins and dystroglycan complexes contribute to Na(+) channel clustering at peripheral nodes by unknown mechanisms. We show that in addition to facing the basal lamina, dystroglycan is found near the nodal matrix around axons, binds matrix components, and participates in initial events of nodogenesis. We identify the dystroglycan-ligand perlecan as a novel nodal component and show that dystroglycan is required for the selective accumulation of perlecan at nodes. Perlecan binds the clustering molecule gliomedin and enhances clustering of node of Ranvier components. These data show that proteoglycans have specific roles in peripheral nodes and indicate that peripheral and central axons use similar strategies but different molecules to form nodes of Ranvier. Further, our data indicate that dystroglycan binds free matrix that is not organized in a basal lamina.
DOI: 10.1016/j.cub.2017.01.025
2017
Cited 32 times
Assembly of CNS Nodes of Ranvier in Myelinated Nerves Is Promoted by the Axon Cytoskeleton
<h2>Summary</h2> Nodes of Ranvier in the axons of myelinated neurons are exemplars of the specialized cell surface domains typical of polarized cells. They are rich in voltage-gated sodium channels (Nav) and thus underpin rapid nerve impulse conduction in the vertebrate nervous system [1]. Although nodal proteins cluster in response to myelination, how myelin-forming glia influence nodal assembly is poorly understood. An axoglial adhesion complex comprising glial Neurofascin155 and axonal Caspr/Contactin flanks mature nodes [2]. We have shown that assembly of this adhesion complex at the extremities of migrating oligodendroglial processes promotes process convergence along the axon during central nervous system (CNS) node assembly [3]. Here we show that anchorage of this axoglial complex to the axon cytoskeleton is essential for efficient CNS node formation. When anchorage is disrupted, both the adaptor Protein 4.1B and the cytoskeleton protein βII spectrin are mislocalized in the axon, and assembly of the node of Ranvier is significantly delayed. Nodal proteins and migrating oligodendroglial processes are no longer juxtaposed, and single detached nodal complexes replace the symmetrical heminodes found in both the CNS and peripheral nervous system (PNS) during development. We propose that axoglial adhesion complexes contribute to the formation of an interface between cytoskeletal elements enriched in Protein 4.1B and βII spectrin and those enriched in nodal ankyrinG and βIV spectrin. This clusters nascent nodal complexes at heminodes and promotes their timely coalescence to form the mature node of Ranvier. These data demonstrate a role for the axon cytoskeleton in the assembly of a critical neuronal domain, the node of Ranvier.
DOI: 10.1002/glia.20688
2008
Cited 46 times
Identification of <i>Tmem10/Opalin</i> as an oligodendrocyte enriched gene using expression profiling combined with genetic cell ablation
Abstract Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, which allows efficient and rapid propagation of action potentials. However, little is known about the molecular mechanisms operating at the onset of myelination and during maintenance of the myelin sheath in the adult. Here we use a genetic cell ablation approach combined with Affymetrix GeneChip microarrays to identify a number of oligodendrocyte‐enriched genes that may play a key role in myelination. One of the “oligogenes” we cloned using this approach is Tmem10/Opalin , which encodes for a novel transmembrane glycoprotein. In situ hybridization and RT‐PCR analysis revealed that Tmem10 is selectively expressed by oligodendrocytes and that its expression is induced during their differentiation. Developmental immunofluorescence analysis demonstrated that Tmem10 starts to be expressed in the white matter tracks of the cerebellum and the corpus callosum at the onset of myelination after the appearance of other myelin genes such as MBP. In contrast to the spinal cord and brain, Tmem10 was not detected in myelinating Schwann cells, indicating that it is a CNS‐specific myelin protein. In mature oligodendrocytes, Tmem10 was present at the cell soma and processes, as well as along myelinated internodes, where it was occasionally concentrated at the paranodes. In myelinating spinal cord cultures, Tmem10 was detected in MBP‐positive cellular processes that were aligned with underlying axons before myelination commenced. These results suggest a possible role of Tmem10 in oligodendrocyte differentiation and CNS myelination. © 2008 Wiley‐Liss, Inc.
DOI: 10.1523/jneurosci.5657-09.2010
2010
Cited 45 times
Cellular Form of Prion Protein Inhibits Reelin-Mediated Shedding of Caspr from the Neuronal Cell Surface to Potentiate Caspr-Mediated Inhibition of Neurite Outgrowth
Extension of axonal and dendritic processes in the CNS is tightly regulated by outgrowth-promoting and -inhibitory cues to assure precision of synaptic connections. We identify a novel role for contactin-associated protein (Caspr) as an inhibitory cue that reduces neurite outgrowth from CNS neurons. We show that proteolysis of Caspr at the cell surface is regulated by the cellular form of prion protein (PrP), which directly binds to Caspr. PrP inhibits Reelin-mediated shedding of Caspr from the cell surface, thereby increasing surface levels of Caspr and potentiating the inhibitory effect of Caspr on neurite outgrowth. PrP deficiency results in reduced levels of Caspr at the cell surface, enhanced neurite outgrowth in vitro, and more efficient regeneration of axons in vivo following spinal cord injury. Thus, we reveal a previously unrecognized role for Caspr and PrP in inhibitory modulation of neurite outgrowth in CNS neurons, which is counterbalanced by the proteolytic activity of Reelin.
DOI: 10.1002/cne.23595
2014
Cited 35 times
Kv7.2 regulates the function of peripheral sensory neurons
The Kv7 (KCNQ) family of voltage-gated K(+) channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole-cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons.
DOI: 10.1016/j.bbapap.2015.02.008
2015
Cited 33 times
Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes
Autism is a human developmental brain disorder characterized by impaired social interaction and communication. Contactin-associated protein-like 2 (Caspr2, CNTNAP2) is a known genetic risk factor of autism. However, how this protein might contribute to pathology is unclear. In this study, we demonstrate that Caspr2 is abundantly present in lipid raft and in the synaptic membrane but is highly depleted in the postsynaptic density. The Caspr2 protein level in hippocampus is present at a constant level during synapse formation and myelination from P0 to P84. Interaction proteomics revealed the interactors of Caspr2, including CNTN2, KCNAs, members of the ADAM family (ADAM22, ADAM23 and ADAM11), members of LGI family and MAGUKs (DLGs and MPPs). Interestingly, a short form of Caspr2 was detected, which lacks most of the extracellular domains, however, is still associated with ADAM22 and to a lesser extent LGI1 and Kv1 channels. The comprehensive Caspr2 interactome revealed here might aid in understanding the molecular mechanisms underlying autism. This article is part of a Special Issue titled Neuroproteomics: Applications in Neuroscience and Neurology.
DOI: 10.1523/jneurosci.0912-20.2020
2020
Cited 21 times
N-Wasp Regulates Oligodendrocyte Myelination
Oligodendrocyte myelination depends on actin cytoskeleton rearrangement. Neural Wiskott-Aldrich syndrome protein(N-Wasp) is an actin nucleation factor that promotes polymerization of branched actin filaments. N-Wasp activity is essential for myelin membrane wrapping by Schwann cells, but its role in oligodendrocytes and CNS myelination remains unknown. Here we report that oligodendrocytes-specific deletion of <i>N-Wasp</i> in mice of both sexes resulted in hypomyelination (i.e., reduced number of myelinated axons and thinner myelin profiles), as well as substantial focal hypermyelination reflected by the formation of remarkably long myelin outfolds. These myelin outfolds surrounded unmyelinated axons, neuronal cell bodies, and other myelin profiles. The latter configuration resulted in pseudo-multimyelin profiles that were often associated with axonal detachment and degeneration throughout the CNS, including in the optic nerve, corpus callosum, and the spinal cord. Furthermore, developmental analysis revealed that myelin abnormalities were already observed during the onset of myelination, suggesting that they are formed by aberrant and misguided elongation of the oligodendrocyte inner lip membrane. Our results demonstrate that N-Wasp is required for the formation of normal myelin in the CNS. They also reveal that N-Wasp plays a distinct role in oligodendrocytes compared with Schwann cells, highlighting a difference in the regulation of actin dynamics during CNS and PNS myelination. <b>SIGNIFICANCE STATEMENT</b> Myelin is critical for the normal function of the nervous system by facilitating fast conduction of action potentials. During the process of myelination in the CNS, oligodendrocytes undergo extensive morphological changes that involve cellular process extension and retraction, axonal ensheathment, and myelin membrane wrapping. Here we present evidence that N-Wasp, a protein regulating actin filament assembly through Arp2/3 complex-dependent actin nucleation, plays a critical role in CNS myelination, and its absence leads to several myelin abnormalities. Our data provide an important step into the understanding of the molecular mechanisms underlying CNS myelination.
DOI: 10.7554/elife.64456
2021
Cited 16 times
TDP-43 maximizes nerve conduction velocity by repressing a cryptic exon for paranodal junction assembly in Schwann cells
TDP-43 is extensively studied in neurons in physiological and pathological contexts. However, emerging evidence indicates that glial cells are also reliant on TDP-43 function. We demonstrate that deletion of TDP-43 in Schwann cells results in a dramatic delay in peripheral nerve conduction causing significant motor deficits in mice, which is directly attributed to the absence of paranodal axoglial junctions. By contrast, paranodes in the central nervous system are unaltered in oligodendrocytes lacking TDP-43. Mechanistically, TDP-43 binds directly to Neurofascin mRNA, encoding the cell adhesion molecule essential for paranode assembly and maintenance. Loss of TDP-43 triggers the retention of a previously unidentified cryptic exon, which targets Neurofascin mRNA for nonsense-mediated decay. Thus, TDP-43 is required for neurofascin expression, proper assembly and maintenance of paranodes, and rapid saltatory conduction. Our findings provide a framework and mechanism for how Schwann cell-autonomous dysfunction in nerve conduction is directly caused by TDP-43 loss-of-function.
1993
Cited 53 times
Neu differentiation factor (heregulin) induces expression of intercellular adhesion molecule 1: implications for mammary tumors.
Neu differentiation factor (NDF, also called heregulin) is a 44-kilodalton glycoprotein that stimulates tyrosine phosphorylation of the Neu/HER-2 receptor and induces phenotypic differentiation of certain mammary cancer cell lines to growth-arrested and milk-producing cells. To determine which molecules participate in the concomitant morphological alterations, we analyzed the expression of several cytoskeletal and surface molecules and found that NDF elevated the expression of the intercellular adhesion molecule 1 (ICAM-1) in cultured AU-565 human adenocarcinoma cells. The levels of both the protein and the mRNA of ICAM-1 were elevated after 3-5 days of treatment with NDF. Elevated expression of ICAM-1 was induced also by gamma-interferon and by the tumor-promoting phorbol ester (PMA), albeit with different kinetics. Down-regulation of protein kinase C or its inhibition by calphostin C partially inhibited the effect of NDF, implying that the induction of ICAM-1 may be mediated by protein kinase C. NDF transcripts were detectable in 3 of 9 human mammary tumors, suggesting that the in vitro effect of the factor may be relevant to breast cancer. By selecting Neu-positive human mammary tumors (n = 39), we found a significant correlation (P < 0.001) between the expression of ICAM-1 and histological features of invasive ductal carcinoma with a prominent carcinoma in situ component. When cultured in vitro the cells of these tumors grew in clusters and formed domelike structures reminiscent of comedo-type carcinoma in situ. In addition, the majority of patients with tumors that coexpressed ICAM-1 and Neu had no lymph node involvement, unlike most Neu-positive but ICAM-1-negative tumors, which metastasized to the lymphatic system. Taken together, our observations suggest that the induction of ICAM-1 by NDF may affect the morphology, differentiation state, and metastasis of Neu-expressing mammary tumor cells.
DOI: 10.1016/j.mcn.2003.09.015
2004
Cited 53 times
Altered expression of ion channel isoforms at the node of Ranvier in P0-deficient myelin mutants
To elucidate the impact of myelinating Schwann cells on the molecular architecture of the node of Ranvier, we investigated the nodal expression of voltage-gated sodium channel (VGSC) isoforms and the localization of paranodal and juxtaparanodal membrane proteins in a severely affected Schwann cell mutant, the mouse deficient in myelin protein zero (P0). The abnormal myelin formation and compaction was associated with immature nodal cluster types of VGSC. Most strikingly, P0-deficient motor nerves displayed an ectopic nodal expression of the Na(v)1.8 isoform, where it is coexpressed with the ubiquitous Na(v)1.6 channel. Furthermore, Caspr was distributed asymmetrically or was even absent in the mutant nerve fibers. The potassium channel K(v)1.2 and Caspr2 were not confined to juxtaparanodes, but often protruding into the paranodes. Thus, deficiency of P0 leads to dysregulation of nodal VGSC isoforms and to altered localization of paranodal and juxtaparanodal components of the nodal complex.
DOI: 10.1016/s0021-9258(18)41926-6
1992
Cited 47 times
An oncogenic point mutation confers high affinity ligand binding to the neu receptor. Implications for the generation of site heterogeneity.
The neu protooncogene encodes a receptor tyrosine kinase homologous to the receptor for the epidermal growth factor. The oncogenic potential of neu is released upon chemical carcinogenesis, which replaces a glutamic acid for a valine residue, within the single transmembrane domain. This results in constitutive receptor dimerization and activation of the intrinsic catalytic function. To study the implications of the oncogenic mutation and the consequent receptor dimerization on the interaction with the yet incompletely characterized ligand of p185neu, we constructed chimeric proteins between the ligand binding domain of the epidermal growth factor receptor and the transmembrane and cytoplasmic domains of the normal or the transforming Neu proteins. The chimeric receptors displayed cellular and biochemical differences characteristic of the normal and the transforming Neu proteins and therefore may reliably represent the ligand binding functions of the two receptor forms. Analyses of ligand binding revealed qualitative and quantitative differences that were a result of the single mutation; whereas the normal chimera (valine version) displayed two populations of binding sites with approximately 90% of the receptors in the low affinity state, the transforming receptor (glutamic acid version) showed a single population of binding sites with relatively high affinity. Kinetics measurements indicated that the difference in affinities was because of slower rates of both ligand association and ligand dissociation from the constitutively dimerized mutant receptor. It therefore appears that the oncogenic mutation, by permanently dimerizing the receptor, establishes a high affinity ligand binding state which is functionally equivalent to the ligand-occupied normal receptor. Our conclusion is further supported by the rates of endocytosis of the wild-type and the mutant receptor. Hence, these results provide the first experimental evidence from living cells which supports a model that attributes the heterogeneity of ligand binding sites to the state of oligomerization of receptor tyrosine kinases.