ϟ

Etiennette Auffray

Here are all the papers by Etiennette Auffray that you can download and read on OA.mg.
Etiennette Auffray’s last known institution is . Download Etiennette Auffray PDFs here.

Claim this Profile →
DOI: 10.1109/tns.2018.2840160
2018
Cited 320 times
Needs, Trends, and Advances in Inorganic Scintillators
This paper presents new developments in inorganic scintillators widely used for radiation detection. It addresses major emerging research topics outlining current needs for applications and material sciences issues with the overall aim to provide an up-to-date picture of the field. While the traditional forms of scintillators have been crystals and ceramics, new research on films, nanoparticles, and microstructured materials is discussed as these material forms can bring new functionality and therefore find applications in radiation detection. The last part of the contribution reports on the very recent evolutions of the most advanced theories, methods, and analyses to describe the scintillation mechanisms.
DOI: 10.1088/1361-6560/ab63b4
2020
Cited 167 times
Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission
Solid state photodetectors like silicon photomultipliers (SiPMs) are playing an important role in several fields of medical imaging, life sciences and high energy physics. They are able to sense optical photons with a single photon detection time precision below 100 ps, making them ideal candidates to read the photons generated by fast scintillators in time of flight positron emission tomography (TOF-PET). By implementing novel high-frequency readout electronics, it is possible to perform a completely new evaluation of the best timing performance achievable with state-of-the-art analog-SiPMs and scintillation materials. The intrinsic SiPM single photon time resolution (SPTR) was measured with Ketek, HPK, FBK, SensL and Broadcom devices. Also, the best achieved coincidence time resolution (CTR) for these devices was measured with LSO:Ce:Ca of [Formula: see text] mm3 and [Formula: see text] mm3 size crystals. The intrinsic SPTR for all devices ranges between 70 ps and 135 ps FWHM when illuminating the entire [Formula: see text] mm2 or [Formula: see text] mm2 area. The obtained CTR with LSO:Ce:Ca of [Formula: see text] mm3 size ranges between 58 ps and 76 ps FWHM for the SiPMs evaluated. Bismuth Germanate (BGO), read out with state of-the-art NUV-HD SiPMs from FBK, achieved a CTR of 158 [Formula: see text] ps and 277 [Formula: see text] ps FWHM for [Formula: see text] mm3 and [Formula: see text] mm3 crystals, respectively. Other BGO geometries yielded 167 [Formula: see text] 3 ps FWHM for [Formula: see text] mm3 and 235 [Formula: see text] 5 ps FWHM for [Formula: see text] mm3 also coupled with Meltmount (n = 1.582) and wrapped in Teflon. Additionally, the average number of Cherenkov photons produced by BGO in each 511 keV event was measured to be 17 [Formula: see text] 3 photons. Based on this measurement, we predict the limits of BGO for ultrafast timing in TOF-PET with Monte Carlo simulations. Plastic scintillators (BC422, BC418), BaF2, GAGG:Ce codoped with Mg and CsI:undoped were also tested for TOF performance. Indeed, BC422 can achieve a CTR of 35 [Formula: see text] 2 ps FWHM using only Compton interactions in the detector with a maximum deposited energy of 340 keV. BaF2 with its fast cross-luminescence enables a CTR of 51 [Formula: see text] 5 ps FWHM when coupled to VUV-HD SiPMs from FBK, with only ∼22% photon detection efficiency (PDE). We summarize the measured CTR of the various scintillators and discuss their intrinsic timing performance.
DOI: 10.1088/1361-6560/ab9500
2020
Cited 144 times
Roadmap toward the 10 ps time-of-flight PET challenge
Since the seventies, positron emission tomography (PET) has become an invaluable medical molecular imaging modality with an unprecedented sensitivity at the picomolar level, especially for cancer diagnosis and the monitoring of its response to therapy. More recently, its combination with x-ray computed tomography (CT) or magnetic resonance (MR) has added high precision anatomic information in fused PET/CT and PET/MR images, thus compensating for the modest intrinsic spatial resolution of PET. Nevertheless, a number of medical challenges call for further improvements in PET sensitivity. These concern in particular new treatment opportunities in the context personalized (also called precision) medicine, such as the need to dynamically track a small number of cells in cancer immunotherapy or stem cells for tissue repair procedures. A better signal-to-noise ratio (SNR) in the image would allow detecting smaller size tumours together with a better staging of the patients, thus increasing the chances of putting cancer in complete remission. Moreover, there is an increasing demand for reducing the radioactive doses injected to the patients without impairing image quality. There are three ways to improve PET scanner sensitivity: improving detector efficiency, increasing geometrical acceptance of the imaging device and pushing the timing performance of the detectors. Currently, some pre-localization of the electron-positron annihilation along a line-of-response (LOR) given by the detection of a pair of annihilation photons is provided by the detection of the time difference between the two photons, also known as the time-of-flight (TOF) difference of the photons, whose accuracy is given by the coincidence time resolution (CTR). A CTR of about 10 picoseconds FWHM will ultimately allow to obtain a direct 3D volume representation of the activity distribution of a positron emitting radiopharmaceutical, at the millimetre level, thus introducing a quantum leap in PET imaging and quantification and fostering more frequent use of 11C radiopharmaceuticals. The present roadmap article toward the advent of 10 ps TOF-PET addresses the status and current/future challenges along the development of TOF-PET with the objective to reach this mythic 10 ps frontier that will open the door to real-time volume imaging virtually without tomographic inversion. The medical impact and prospects to achieve this technological revolution from the detection and image reconstruction point-of-views, together with a few perspectives beyond the TOF-PET application are discussed.
DOI: 10.1088/1361-6560/aafd52
2019
Cited 127 times
High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET
Scintillator based radiation detectors readout by SiPMs successively break records in their reached time resolution. Nevertheless, new challenges in time of flight positron emission tomography (TOF-PET) and high energy physics are setting unmatched goals in the 10 ps range. Recently it was shown that high frequency (HF) readout of SiPMs significantly improves the measured single photon time resolution (SPTR), allowing to evaluate the intrinsic performance of large area devices; e.g. FBK NUV-HD SiPMs of [Formula: see text] mm2 area and 40 [Formula: see text]m single photon avalanche diode (SPAD) size achieve 90 ps FWHM. In TOF-PET such readout allows to lower the leading edge detection threshold, so that the fastest photons produced in the crystal can be utilized. This is of utmost importance if a high SPTR and prompt Cherenkov light generated by the hot-recoil electron upon 511 keV photo-absorption should improve timing. This paper shows that high-frequency bipolar transistor readout of state-of-the-art SiPMs coupled to high-performance scintillators can substantially improve the best achievable coincidence time resolution (CTR) in TOF-PET. In this context a CTR of 158 [Formula: see text] 3 ps FWHM with [Formula: see text] mm3 BGO crystals coupled to FBK SiPMs is achieved. This faint Cherenkov signal is as well present in standard LSO scintillators, which together with low SPTR values (<90 ps FWHM) improves the CTR of [Formula: see text] mm3 LSO:Ce:Ca coupled to FBK NUV-HD [Formula: see text] mm2 with 25 [Formula: see text]m SPAD size to 61 [Formula: see text] 2 ps FWHM using HF-electronics, as compared to 73 [Formula: see text] 2 ps when readout by the NINO front-end ASIC. When coupling the LSO:Ce:Ca crystals to FBK NUV-HD SiPMs of [Formula: see text] mm2 and 40 [Formula: see text]m SPAD size, using HF-electronics, a CTR of even 58 [Formula: see text] 3 ps for [Formula: see text] mm3 and 98 [Formula: see text] 3 ps for [Formula: see text] mm3 is achieved. This new experimental data will allow to further discuss the timing limits in scintillator-based detectors.
DOI: 10.1038/s41566-021-00769-z
2021
Cited 99 times
Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals
DOI: 10.1016/0168-9002(95)00589-7
1995
Cited 300 times
Lead tungstate (PbWO4) scintillators for LHC EM calorimetry
This report describes the work carried out in order to analyse the properties of PbWO4 crystals as scintillators and to determine the perspectives of their use in calorimetry in Large Hadron Collider (LHC) experiments. The scintillation mechanism in PWO crystals is explained and the properties connected with their use as scintillators are analysed both for undoped and Nb doped crystals. The specific problems concerning the physical parameters in the case of large scale production of PWO scintillators are discussed.
DOI: 10.1088/0031-9155/61/7/2802
2016
Cited 135 times
Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET
The coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time (τd) and the number of photons detected (n'), i.e. CTR proportional variant √τd/n'. However, it is still an open question to what extent the scintillation rise time (τr) and other fast or prompt photons, e.g. Cherenkov photons, at the beginning of the scintillation process influence the CTR. This paper presents measurements of the scintillation emission rate for different LSO type crystals, i.e. LSO:Ce, LYSO:Ce, LSO:Ce codoped Ca and LGSO:Ce. For the various LSO-type samples measured we find an average value of 70 ps for the scintillation rise time, although some crystals like LSO:Ce codoped Ca seem to have a much faster rise time in the order of 20 ps. Additional measurements for LuAG:Ce and LuAG:Pr show a rise time of 535 ps and 251 ps, respectively. For these crystals, prompt photons (Cherenkov) can be observed at the beginning of the scintillation event. Furthermore a significantly lower rise time value is observed when codoping with calcium. To quantitatively investigate the influence of the rise time to the time resolution we measured the CTR with the same L(Y)SO samples and compared the values to Monte Carlo simulations. Using the measured relative light yields, rise- and decay times of the scintillators we are able to quantitatively understand the measured CTRs in our simulations. Although the rise time is important to fully explain the CTR variation for the different samples tested we determined its influence on the CTR to be in the order of a few percent only. This result is surprising because, if only photonstatistics of the scintillation process is considered, the CTR would be proportional to the square root of the rise time. The unexpected small rise time influence on the CTR can be explained by the convolution of the scintillation rate with the single photon time resolution (SPTR) of the photodetector and the photon travel spread (PTS) in the crystal. The timing benefits of prompt photons at the beginning of the scintillation process (Cherenkov etc) are further studied, which leads to the conclusion that the scintillation rise time, SPTR and PTS have to be lowered simultaneously to fully profit from these fast photons in order to improve the CTR significantly.
DOI: 10.1088/1748-0221/11/08/p08008
2016
Cited 130 times
State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs
Time of flight (TOF) in positron emission tomography (PET) has experienced a revival of interest after its first introduction in the eighties. This is due to a significant progress in solid state photodetectors (SiPMs) and newly developed scintillators (LSO and its derivatives). Latest developments at Fondazione Bruno Kessler (FBK) lead to the NUV-HD SiPM with a very high photon detection efficiency of around 55%. Despite the large area of 4×4 mm2 it achieves a good single photon time resolution (SPTR) of 180±5ps FWHM. Coincidence time resolution (CTR) measurements using LSO:Ce codoped with Ca scintillators yield best values of 73±2ps FWHM for 2×2×3 mm3 and 117±3ps for 2×2×20 mm3 crystal sizes. Increasing the crystal cross-section from 2×2 mm2 to 3×3 mm2 a non negligible CTR deterioration of approximately 7ps FWHM is observed. Measurements with LSO:Ce codoped Ca and LYSO:Ce scintillators with various cross-sections (1×1 mm2 - 4×4 mm2) and lengths (3mm - 30mm) will be a basis for discussing on how the crystal geometry affects timing in TOF-PET. Special attention is given to SiPM parameters, e.g. SPTR and optical crosstalk, and their measured dependency on the crystal cross-section. Additionally, CTR measurements with LuAG:Ce, LuAG:Pr and GGAG:Ce samples are presented and the results are interpreted in terms of their scintillation properties, e.g. rise time, decay time, light yield and emission spectra.
DOI: 10.1088/0031-9155/60/12/4635
2015
Cited 124 times
Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca
The coincidence time resolution (CTR) becomes a key parameter of 511 keV gamma detection in time of flight positron emission tomography (TOF-PET). This is because additional information obtained through timing leads to a better noise suppression and therefore a better signal to noise ratio in the reconstructed image. In this paper we present the results of CTR measurements on two different SiPM technologies from FBK coupled to LSO:Ce codoped 0.4%Ca crystals. We compare the measurements performed at two separate test setups, i.e. at CERN and at FBK, showing that the obtained results agree within a few percent. We achieve a best CTR value of 85 ± 4 ps FWHM for 2 × 2 × 3 mm(3) LSO:Ce codoped 0.4%Ca crystals, thus breaking the 100 ps barrier with scintillators similar to LSO:Ce or LYSO:Ce. We also demonstrate that a CTR of 140 ± 5 ps can be achieved for longer 2 × 2 × 20 mm(3) crystals, which can readily be implemented in the current generation PET systems to achieve the desired increase in the signal to noise ratio.
DOI: 10.1088/1748-0221/8/07/p07014
2013
Cited 115 times
Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis
Scintillation crystals have a wide range of applications in detectors for high energy and medical physics. They are recquired to have not only good energy resolution, but also excellent time resolution. In medical applications, L(Y)SO crystals are commonly used for time of flight positron emission tomography (TOF-PET). This study aims at determining the experimental and theoretical limits of timing using L(Y)SO based scintillators coupled to silicon photomultipliers (SiPMs). Measurements are based on the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO and a fast oscilloscope. Using a 2 × 2 × 3 mm3 LSO:Ce codoped 0.4% Ca crystal coupled to a commercially available SiPM (Hamamatsu S10931-050P MPPC), we achieve a coincidence time resolution (CTR) of 108±5ps FWHM measured at E=511keV. We determine the influence of the data acquisition system to 27±2ps FWHM and thus negligible as compared to the CTR. This shows that L(Y)SO scintillators coupled to SiPM photodetectors are capable of achieving very good time resolution close to the desired 100ps FWHM for TOF-PET systems. To fully understand the measured values, we developed a simulation tool in MATLAB that incorporates the timing properties of the photodetector, the scintillation properties of the crystal and the light transfer within the crystal simulated by SLITRANI. The simulations are compared with measured data in order to determine their predictive power. Finally we use this model to discuss the influence of several important parameters on the time resolution like scintillation rise- and fall time and light yield, as well as single photon time resolution (SPTR) and the detection efficiency of the SiPM. In addition we find the influence of photon travel time spread in the crystal not negligible on the CTR, even for the used 2 × 2 × 3 mm3 geometry.
DOI: 10.1063/1.3452358
2010
Cited 109 times
LuAG:Ce fibers for high energy calorimetry
The main objective of this contribution is to point out the potentialities of cerium doped LuAG single crystal as pixels and fibers. We first show that after optimization of growth conditions using Bridgman technology, this composition exhibits very good performances for scintillating applications (up to 26 000 photons/MeV). When grown with the micropulling down technology, fiber shapes can be obtained while the intrinsic performances are preserved. For the future high energy experiments requiring new detector concepts capable of delivering much richer informations about x- or gamma-ray energy deposition, unusual fiber shaped dense materials need to be developed. We demonstrate in this frame that cerium doped LuAG is a serious candidate for the next generation of ionizing radiation calorimeters.
DOI: 10.1016/j.nima.2016.02.004
2016
Cited 91 times
Effect of Mg 2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd 3 Al 2 Ga 3 O 12 crystals
Inorganic scintillators with high density and high light yield are of major interest for applications in medical imaging and high energy physics detectors. In this work, the optical and scintillation properties of Mg co-doped Ce:Gd3Al2Ga3O12 crystals, grown using Czochralski technique, have been investigated and compared with Ce:Gd3Al2Ga3O12 ones prepared with identical technology. Improvements in the timing performance of the Mg co-doped samples with respect to Ce:Gd3Al2Ga3O12 ones have been measured, namely a substantial shortening of the rise time and scintillation decay components and lower afterglow were achieved. In particular, a significantly better coincidence time resolution of 233 ps FWHM, being a fundamental parameter for TOF-PET devices, has been observed in Mg co-doped crystals. The samples have also shown a good radiation tolerance under high doses of γ-rays, making them suitable candidates for applications in harsh radiation environments, such as detectors at future collider experiments.
DOI: 10.1016/j.nima.2013.11.025
2014
Cited 81 times
Time resolution deterioration with increasing crystal length in a TOF-PET system
Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-050P MPPC) we achieve a CTR of 108±5 ps FWHM at an energy of 511 keV. Under the same experimental conditions an increase in crystal length to 5 mm deteriorates the CTR to 123±7 ps FWHM, 10 mm to 143±7 ps FWHM and 20 mm to 176±7 ps FWHM. This degradation in CTR is caused by the light transfer efficiency (LTE) and light transfer time spread (LTTS) in the crystal. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB incorporating the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal simulated by SLITRANI. In this work, we show that the predictions of the simulation are in good agreement with the experimental data. We conclude that for longer crystals the deterioration in CTR is mainly caused by the LTE, i.e. the ratio of photons reaching the photodetector to the total amount of photons generated by the scintillation whereas the LTTS influence is partly offset by the gamma absorption in the crystal.
DOI: 10.1088/1361-6560/aadbcd
2018
Cited 76 times
Improved single photon time resolution for analog SiPMs with front end readout that reduces influence of electronic noise
A key step to improve the coincidence time resolution of positron emission tomography detectors that exploit small populations of promptly emitted photons is improving the single photon time resolution (SPTR) of silicon photomultipliers (SiPMs). The influence of electronic noise has previously been identified as the dominant factor affecting SPTR for large area, analog SiPMs. In this work, we measure the achievable SPTR with front end electronic readout that minimizes the influence of electronic noise. With this readout circuit, the SPTR measured for one FBK NUV single avalanche photodiode (SPAD) was also achieved with a mm2 FBK NUV SiPM. SPTR for large area devices was also significantly improved. The measured SPTRs for mm2 Hamamatsu and SensL SiPMs were 150 ps FWHM, and SPTR 100 ps FWHM was measured for mm2 and mm2 FBK NUV and NUV-HD SiPMs. We also explore additional factors affecting the achievable SPTR for large area, analog SiPMs when the contribution of electronic noise is minimized and pinpoint potential areas of improvement to further reduce the SPTR of large area sensors towards that achievable for a single SPAD.
DOI: 10.1016/j.nima.2018.02.074
2018
Cited 68 times
Precise rise and decay time measurements of inorganic scintillators by means of X-ray and 511 keV excitation
The emergence of new solid-state avalanche photodetectors, e.g. SiPMs, with unprecedented timing capabilities opens new ways to profit from ultrafast and prompt photon emission in scintillators. In time of flight positron emission tomography (TOF-PET) and high energy timing detectors based on scintillators the ultimate coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation rise time, decay time and the reciprocal light yield, CTR∝τrτd∕LY. Hence, the precise study of light emission in the very first tens of picoseconds is indispensable to understand time resolution limitations imposed by the scintillator. We developed a time correlated single photon counting setup having a Gaussian impulse response function (IRF) of 63ps sigma, allowing to precisely measure the scintillation rise time of various materials with 511keV excitation. In L(Y)SO:Ce we found two rise time components, the first below the resolution of our setup <10 ps and a second component being ∼380 ps. Co-doping with Ca2+ completely suppresses the slow rise component leading to a very fast initial scintillation emission with a rise time of <10ps. A very similar behavior is observed in LGSO:Ce crystals. The results are further confirmed by complementary measurements using a streak-camera system with pulsed X-ray excitation and additional 511 keV excited measurements of Mg2+ co-doped LuAG:Ce, YAG:Ce and GAGG:Ce samples.
DOI: 10.1088/1361-6560/ab2cb0
2019
Cited 64 times
On light sharing TOF-PET modules with depth of interaction and 157 ps FWHM coincidence time resolution
The performance of a light sharing and recirculation mechanism that allows the extraction of depth of interaction (DOI) are investigated in this paper, with a particular focus on timing. In parallel, a method to optimize the coincidence time resolution (CTR) of PET detectors by use of the DOI information is proposed and tested. For these purposes, a dedicated 64-channels readout setup has been developed with intrinsic timing resolution of 16 ps FWHM. Several PET modules have been produced, based on LYSO:Ce scintillators and commercial silicon photomultiplier (SiPM) arrays, with [Formula: see text] mm2 individual SiPM size. The results show the possibility to achieve a timing resolution of 157 ps FWHM, combined with the already demonstrated spatial resolution of 1.5 mm FWHM, DOI resolution of 3 mm FWHM, and energy resolution of 9% FWHM at 511 keV, with 15 mm long crystals of section [Formula: see text] mm2 and [Formula: see text] mm2. At the same time, the extraction of the DOI coordinate has been demonstrated not to deteriorate the timing performance of the PET module.
DOI: 10.1088/1361-6560/ab87f9
2020
Cited 59 times
Pushing Cherenkov PET with BGO via coincidence time resolution classification and correction
Abstract Bismuth germanate (BGO) shows good properties for positron emission tomography (PET) applications, but was substituted by the development of faster crystals like lutetium oxyorthosilicate (LSO) for time-of-flight PET (TOF-PET). Recent improvements in silicon photomultipliers (SiPMs) and fast readout electronics make it possible to access the Cherenkov photon signal produced upon 511 keV interaction, which makes BGO a cost-effective candidate for TOF-PET. Tails in the time-delay distribution, however, remain a challenge. These are mainly caused by the high statistical fluctuation on the Cherenkov photons detected. To select fast events with a high detected Cherenkov photon number, the signal rise time of the SiPM was used for discrimination. The charge, time delay and signal rise time was measured for two different lengths of BGO crystals coupled to FBK NUV-HD SiPMs and high frequency readout in a coincidence time resolution setup. The recorded events were divided into 5 × 5 categories based on the signal rise time, and time resolutions of 200 ± 3 ps for 2 × 2 × 20 mm 3 and 117 ± 3 ps for 2 × 2 × 3 mm 3 were measured for the fastest 20% of the events (4% in coincidence). These good timing events can provide additional information for the image reconstruction in order to increase the SNR significantly, without spoiling the detector sensitivity. Putting all photopeak events together and correcting for the time bias introduced by different numbers of Cherenkov photons detected, time resolutions of 259 ± 3 ps for 20 mm long and 151 ± 3 ps for 3 mm long crystals were measured. For a small fraction of events sub-100 ps coincidence time resolution with BGO was reached for a 3 mm short pixel.
DOI: 10.1038/s41467-022-31163-0
2022
Cited 38 times
Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications
Large Stokes shift fast emitters show a negligible reabsorption of their luminescence, a feature highly desirable for several applications such as fluorescence imaging, solar-light managing, and fabricating sensitive scintillating detectors for medical imaging and high-rate high-energy physics experiments. Here we obtain high efficiency luminescence with significant Stokes shift by exploiting fluorescent conjugated acene building blocks arranged in nanocrystals. Two ligands of equal molecular length and connectivity, yet complementary electronic properties, are co-assembled by zirconium oxy-hydroxy clusters, generating crystalline hetero-ligand metal-organic framework (MOF) nanocrystals. The diffusion of singlet excitons within the MOF and the matching of ligands absorption and emission properties enables an ultrafast activation of the low energy emission in the 100 ps time scale. The hybrid nanocrystals show a fluorescence quantum efficiency of ~60% and a Stokes shift as large as 750 meV (~6000 cm-1), which suppresses the emission reabsorption also in bulk devices. The fabricated prototypal nanocomposite fast scintillator shows benchmark performances which compete with those of some inorganic and organic commercial systems.
DOI: 10.1088/1361-6560/ac72ee
2022
Cited 25 times
Advances in heterostructured scintillators: toward a new generation of detectors for TOF-PET
Objective.Time-of-flight-positron emission tomography would highly benefit from a coincidence time resolution (CTR) below 100 ps: improvement in image quality and patient workflow, and reduction of delivered dose are among them. This achievement proved to be quite challenging, and many approaches have been proposed and are being investigated for this scope. One of the most recent consists in combining different materials with complementary properties (e.g. high stopping power for 511 keVγ-ray and fast timing) in a so-calledheterostructure,metascintillatorormetapixel. By exploiting a mechanism of energy sharing between the two materials, it is possible to obtain a fraction of fast events which significantly improves the overall time resolution of the system.Approach.In this work, we present the progress on this innovative technology. After a simulation study using the Geant4 toolkit, aimed at understanding the optimal configuration in terms of energy sharing, we assembled four heterostructures with alternating plates of BGO and EJ232 plastic scintillator. We fabricated heterostructures of two different sizes (3 × 3 × 3 mm3and 3 × 3 × 15 mm3), each made up of plates with two different thicknesses of plastic plates. We compared the timing of these pixels with a standard bulk BGO crystal and a structure made of only BGO plates (layeredBGO).Main results.CTR values of 239 ± 12 ps and 197 ± 10 ps FWHM were obtained for the 15 mm long heterostructures with 100µm and 200µm thick EJ232 plates (both with 100µm thick BGO plates), compared to 271 ± 14 ps and 303 ± 15 ps CTR for bulk and layered BGO, respectively.Significance.Significant improvements in timing compared to standard bulk BGO were obtained for all the configurations tested. Moreover, for the long pixels, depth of interaction (DOI) collimated measurements were also performed, allowing to validate a simple model describing light transport inside the heterostructure.
DOI: 10.1016/j.mtchem.2023.101455
2023
Cited 10 times
PEA2PbI4: fast two-dimensional lead iodide perovskite scintillator with green and red emission
Among the two-dimensional hybrid organic-inorganic perovskites, PEA2PbBr4 is one of the best scintillators combining high light yield and fast nanosecond decay time. However, it has limited sensitivity to X-ray and positron emission tomography because of insufficient mass density and effective atomic number. In this article, we show that exchanging the halide from bromide to iodide allows to shorten the absorption length as much as two times for X-ray energies. We present a detailed study on scintillation properties of self-grown samples of PEA2PbI4 crystal, which we compare with the previously reported results for PEA2PbBr4 crystal. The synthesis method of PEA2PbI4 crystal is based on dissolving the perovskite precursors in hydroiodic acid, which is then stirred and left for evaporation. Our measurements include the characterizations with optical, X-ray, and γ-ray sources. We observe two emission bands of PEA2PbI4 crystal centered at 532 (green) and 660 (red) nm, and we link them to the scintillation mechanisms involving exciton and surface defect states. We also report the scintillation light yields of 1,000 and 10,000 photons/MeV at room temperature and 10 K, respectively, and the coincidence timing resolution full width at half maximum of 138 ps, and the fast component in scintillation decay curve of 0.5 ns. This fast component is much faster than that of 13.4 ns of PEA2PbBr4 crystal, and with two times shorter absorption length, it secures better opportunities in timing applications in particular time-of-flight positron emission tomography and high energy physics.
DOI: 10.1109/trpms.2022.3208615
2023
Cited 9 times
Image Reconstruction Analysis for Positron Emission Tomography With Heterostructured Scintillators
The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0 × 3.1 × 15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32% for 100-μm thick plastic layers and 52% for 50 μm, the coincidence time resolution (CTR) distribution improved to 204 ± 49 and 220 ± 41 ps, respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On an NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast-to-noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.
DOI: 10.1002/pssb.2221950134
1996
Cited 132 times
Slow components in the photoluminescence and scintillation decays of PbWO4 single crystals
Abstract The decay kinetics of PbWO 4 luminescence and scintillation is investigated in a broad time scale 10 −9 to 10 −3 mainly at room temperature using a selected set of PbWO 4 crystals. The light sum released in different time gates is estimated showing rather high content of slow recombination processes related mainly to the green PbWO 4 emission component. Correlations are found among the absolute green emission intensity, crystal light yield, and the amplitude of very slow processes in the PbWO 4 scintillation decay.
DOI: 10.1109/tns.2010.2049860
2010
Cited 88 times
Factors Influencing Time Resolution of Scintillators and Ways to Improve Them
The renewal of interest in Time of Flight Positron Emission Tomography (TOF-PET), as well as the necessity to precisely tag events in high energy physics (HEP) experiments at future colliders are pushing for an optimization of all factors affecting the time resolution of the whole acquisition chain comprising the crystal, the photo detector, and the electronics. The time resolution of a scintillator-based detection system is determined by the rate of photo electrons at the detection threshold, which depends on the time distribution of photons being converted in the photo detector. The possibility to achieve time resolution of about 100 ps Full Width at Half Maximum (FWHM) requires an optimization of the light production in the scintillator, the light transport and its transfer from the scintillator to the photo detector. In order to maximize the light yield, and in particular the density of photons in the first nanosecond, while minimizing the rise time and decay time, particular attention must be paid to the energy transfer mechanisms to the activator as well as to the energy transition type at the activator ion. Alternatively other light emission mechanisms can be considered. We show that particularly Cerenkov emission can be used for this purpose. Special emphasis was put on the light transport within the crystal and at its interface with the photo detector. Since light is produced isotropically in the scintillator the detector geometry must be optimized to decrease the optical path-length to the photo detector. Moreover light bouncing within the scintillator, affecting about 70% of the photons generated in currently used crystals, must be reduced as much as possible. We also investigate photonics crystals that are specifically designed to favor specific light propagation modes at the limit of total reflection inside and outside of the crystal and how they might increase the light transfer efficiency to the photo detector and hence improve time resolution. Examples for the production and deposition of photonics crystals as layers on Lutetium Yttrium Ortho-Silicate (LYSO) and Lutetium Yttrium Aluminum Perovskite (LuYAP) crystals are shown here, as well as first results on an improved light extraction resulting from this method.
DOI: 10.1109/tns.2011.2119493
2011
Cited 79 times
Time-Based Readout of a Silicon Photomultiplier (SiPM) for Time of Flight Positron Emission Tomography (TOF-PET)
Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision.We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter.The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 input resistance.Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports.The leading edge of the output signal provides the time information, while the trailing edge provides the energy information.Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 3 mm 2 SiPM-model, read out with a differential current amplifier.The results of these simulations are presented here and compared with experimental data obtained with a 3 3 15 mm 3 LSO crystal coupled to a SiPM.The measured time coincidence precision and the limitations in the overall timing accuracy are interpreted using Monte Carlo/SPICE simulation, Poisson statistics, and geometric effects of the crystal.
DOI: 10.1088/1748-0221/11/10/p10016
2016
Cited 69 times
Single photon time resolution of state of the art SiPMs
Comparison of the timing performance of different silicon photomultipliers (SiPMs) can be useful for applications that employ these devices. In our study, we characterize some of the currently available SiPMs to compare the single photon time resolution (SPTR) values measured using a 420 nm laser with a pulse width of 42 ps FWHM. SPTR values in the range of 175–330 ps FWHM were measured for most 3 × 3 mm2 and 4 × 4 mm2 devices and varied with the producer and the type of the SiPM. Factors influencing the SPTR including the area, cell to cell non-uniformity and the SPAD (single photon avalanche diode) jitter were investigated by the use of laser light focused at the level of a SPAD within a SiPM. The standard deviation of the SPTR values measured among different cells within a Hamamatsu Through Silicon Via SiPM was found to be less than 5 ps. When measured with focused laser the values of SPTR, the signal delay and the relative PDE were found to vary among different points within a SPAD of a SiPM. We found that such variation causes the values of SPTR measured with focused illumination to be better than when measured with diffuse illumination which probes the entire SiPM active surface. SPTR values close to 20 ps FWHM have been measured for standalone single SPADs produced by FBK after correcting for the laser jitter and the acquisition jitter. The performed tests helped us to understand the limits of the SPAD jitter. We infer that the dominant factor contributing to the degradation of the SPTR from the level of a SPAD to a SiPM is mostly driven by detector noise, if the influence of the signal delay time spread is reduced to a minimum.
DOI: 10.1088/0031-9155/61/12/4679
2016
Cited 61 times
A new method for depth of interaction determination in PET detectors
A new method for obtaining depth of interaction (DOI) information in PET detectors is presented in this study, based on sharing and redirection of scintillation light among multiple detectors, together with attenuation of light over the length of the crystals. The aim is to obtain continuous DOI encoding with single side readout, and at the same time without the need for one-to-one coupling between scintillators and detectors, allowing the development of a PET scanner with good spatial, energy and timing resolutions while keeping the complexity of the system low. A prototype module has been produced and characterized to test the proposed method, coupling a LYSO scintillator matrix to a commercial SiPMs array. Excellent crystal separation is obtained for all the scintillators in the array, light loss due to depolishing is found to be negligible, energy resolution is shown to be on average 12.7% FWHM. The mean DOI resolution achieved is 4.1 mm FWHM on a 15 mm long crystal and preliminary coincidence time resolution was estimated in 353 ps FWHM.
DOI: 10.1038/s41699-019-0120-8
2019
Cited 59 times
On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection
Abstract The technological challenge imposed by the time resolution essential to achieve real-time molecular imaging calls for a new generation of ultrafast detectors. In this contribution, we demonstrate that CdSe-based semiconductor nanoplatelets can be combined with standard scintillator technology to achieve 80 ps coincidence time resolution on a hybrid functional pixel. This result contrasts with the fact that the overall detector light output is considerably affected by the loss of index-light-guiding. Here, we exploit the principle of 511 keV energy sharing between a high-Z, high stopping power bulk scintillator, and a nano-scintillator with sub-1 ns radiative recombination times, aiming at a breakthrough in the combined energy and time resolution performance. This proof-of-concept test opens the way to the design and study of larger size sensors using thin nanocomposite layers able to perform as efficient time taggers in a sampling detector geometry of new generation.
DOI: 10.1088/1361-6560/ab18b3
2019
Cited 58 times
Towards a metamaterial approach for fast timing in PET: experimental proof-of-concept
Abstract Achieving fast timing in positron emission tomography (PET) at the level of few tens of picoseconds of picoseconds is limited by the photon emission rate of existent materials with standard scintillation mechanisms. This has led to consider quantum confined excitonic sub-1 ns emission in semiconductors as a viable solution to enhance the amount of fast-emitted photons produced per gamma event. However the introduction of nanocrystals and nanostructures into the domain of radiation detectors is a challenging problem. In order to move forward along this line, the standard bulk detector geometry and readout should be updated to allow for the implementation of new materials and within others, compensate for some of their intrinsic limitations. In this paper we will cover two study cases in which a fast emitter is combined with state-of-the-art scintillators in a sampling geometry designed to provide better timing for a fraction of the 511 keV events. For this test, we use a fast plastic scintillator BC-422 able to deliver a detector time resolution (DTR) of 25 ps FWHM (equivalent coincidence time resolution CTR of 35 ps) and we combined it with LYSO or BGO 200 m thick plates building a sampling pixel composed by two active scintillating materials. We develop a new proof of concept readout that allows for the identification of different types of events, carrying standard or improved timing information. Results are showing a DTR of 67 ps FWHM (equivalent to a CTR of 95 ps) for one third of the events depositing 511 keV in the BGO + BC-422 mm 3 sampling pixel. The other two third of the 511 keV events perform like standard bulk 3 mm long BGO crystals with a time resolution of around 117 ps (equivalent to a CTR of 165 ps). For the case of LYSO + BC-422 sampling pixel, shared 511 keV events reach a DTR of 39 ps (CTR of 55 ps) in comparison to 57 ps (CTR of 83 ps) for 511 keV events fully contained in LYSO of the same size. This work is a step forward in the integration of fast semiconductor nanocrystals and nanostructures with present detector technologies.
DOI: 10.1364/oe.24.015289
2016
Cited 56 times
Preparation and luminescence properties of ZnO:Ga – polystyrene composite scintillator
Highly luminescent ZnO:Ga-polystyrene composite (ZnO:Ga-PS) with ultrafast subnanosecond decay was prepared by homogeneous embedding the ZnO:Ga scintillating powder into the scintillating organic matrix. The powder was prepared by photo-induced precipitation with subsequent calcination in air and Ar/H2 atmospheres. The composite was subsequently prepared by mixing the ZnO:Ga powder into the polystyrene (10 wt% fraction of ZnO:Ga) and press compacted to the 1 mm thick pellet. Luminescent spectral and kinetic characteristics of ZnO:Ga were preserved. Radioluminescence spectra corresponded purely to the ZnO:Ga scintillating phase and emission of polystyrene at 300-350 nm was absent. These features suggest the presence of non-radiative energy transfer from polystyrene host towards the ZnO:Ga scintillating phase which is confirmed by the measurement of X-ray excited scintillation decay with picosecond time resolution. It shows an ultrafast rise time below the time resolution of the experiment (18 ps) and a single-exponential decay with the decay time around 500 ps.
DOI: 10.1088/1361-6560/abf476
2021
Cited 30 times
Vacuum ultraviolet silicon photomultipliers applied to BaF<sub>2</sub> cross-luminescence detection for high-rate ultrafast timing applications
Inorganic scintillators are widely used for fast timing applications in high-energy physics (HEP) experiments, time-of-flight positron emission tomography and time tagging of soft and hard x-ray photons at advanced light sources. As the best coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation decay time it is worth studying fast cross-luminescence, for example in BaF2which has an intrinsic yield of about 1400 photons/MeV. However, emission bands in BaF2are located in the deep-UV at 195 nm and 220 nm, which sets severe constraints on photodetector selection. Recent developments in dark matter and neutrinoless double beta decay searches have led to silicon photomultipliers (SiPMs) with photon detection efficiencies of 20%-25% at wavelengths of 200 nm. We tested state-of-the-art devices from Fondazione Bruno Kessler and measured a best CTR of 51 ± 5 ps full width at half maximum when coupling 2 mm × 2 mm × 3 mm BaF2crystals excited by 511 keV electron-positron annihilation gammas. Using these vacuum ultraviolet SiPMs we recorded the scintillation kinetics of samples from Epic Crystal under 511 keV excitation, confirming a fast decay time of 855 ps with 12.2% relative light yield and 805 ns with 84.0% abundance, together with a smaller rise time of 4 ps beyond the resolution of our setup. The total intrinsic light yield was determined to be 8500 photons/MeV. We also revealed a faster component with 136 ps decay time and 3.7% light yield contribution, which is extremely interesting for the fastest timing applications. Timing characteristics and CTR results on BaF2samples from different producers and with different dopants (yttrium, cadmium and lanthanum) are given, and clearly show that the the slow 800 ns emission can be effectively suppressed. Such results ultimately pave the way for high-rate ultrafast timing applications in medical diagnosis, range monitoring in proton or heavy ion therapy and HEP.
DOI: 10.1039/d2tc02060b
2022
Cited 18 times
Timing performance of lead halide perovskite nanoscintillators embedded in a polystyrene matrix
Nanocrystals of CsPbBr 3 have been incorporated in a polystyrene matrix with 1–10% weight filling factors. Samples were characterized with the main focus on their timing capability under soft X-ray irradiation for application as ultrafast scintillation detectors.
DOI: 10.1021/acs.jpcc.3c00824
2023
Cited 9 times
A<sub>2</sub>B<sub><i>n</i>–1</sub>Pb<sub><i>n</i></sub>I<sub>3<i>n</i>+1</sub> (A = BA, PEA; B = MA; <i>n</i> = 1, 2): Engineering Quantum-Well Crystals for High Mass Density and Fast Scintillators
Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., A2PbX4 (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.g., BPbX3 (B = MA). Inserting 3D into QW structures resulted in new structures, namely A2BPb2X7 perovskite crystals, and they may have promising optical and scintillation properties toward higher mass density and fast timing scintillators. In this article, we investigate the crystal structure as well as optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with the fastest PL decay time <1 ns, while A2MAPb2I7 crystals exhibit a high mass density of >3.0 g/cm3 and tunable smaller bandgaps <2.1 eV resulting from quantum and dielectric confinement. We observe that A2PbI4 and PEA2MAPb2I7 show emission under X- and γ-ray excitations. We further observe that some QW HOIP iodide scintillators exhibit shorter radiation absorption lengths (∼3 cm at 511 keV) and faster scintillation decay time components (∼0.5 ns) compared to those of QW HOIP bromide scintillators. Finally, we investigate the light yields of iodide-based QW HOIP crystals at 10 K (∼10 photons/keV), while at room temperature they still show pulse height spectra with light yields between 1 and 2 photons/keV, which is still >5 times lower than those for bromides. The lower light yields can be the drawbacks of iodide-based QW HOIP scintillators, but the promising high mass density and decay time results of our study can provide the right pathway for further improvements toward fast-timing applications.
DOI: 10.1021/acsenergylett.3c01396
2023
Cited 8 times
Ultrafast and Radiation-Hard Lead Halide Perovskite Nanocomposite Scintillators
The use of scintillators for the detection of ionizing radiation is a critical aspect in many fields, including medicine, nuclear monitoring, and homeland security. Recently, lead halide perovskite nanocrystals (LHP-NCs) have emerged as promising scintillator materials. However, the difficulty of affordably upscaling synthesis to the multigram level and embedding NCs in optical-grade nanocomposites without compromising their optical properties still limits their widespread use. In addition, fundamental aspects of the scintillation mechanisms are not fully understood, leaving the scientific community without suitable fabrication protocols and rational guidelines for the full exploitation of their potential. In this work, we realize large polyacrylate nanocomposite scintillators based on CsPbBr3 NCs, which are synthesized via a novel room temperature, low waste turbo-emulsification approach, followed by their in situ transformation during the mass polymerization process. The interaction between NCs and polymer chains strengthens the scintillator structure, homogenizes the particle size distribution and passivates NC defects, resulting in nanocomposite prototypes with luminescence efficiency >90%, exceptional radiation hardness, 4800 ph/MeV scintillation yield even at low NC loading, and ultrafast response time, with over 30% of scintillation occurring in the first 80 ps, promising for fast-time applications in precision medicine and high-energy physics. Ultrafast radioluminescence and optical spectroscopy experiments using pulsed synchrotron light further disambiguate the origin of the scintillation kinetics as the result of charged-exciton and multiexciton recombination formed under ionizing excitation. This highlights the role of nonradiative Auger decay, whose potential impact on fast timing applications we anticipate via a kinetic model.
DOI: 10.1002/(sici)1521-396x(199811)170:1<47::aid-pssa47>3.0.co;2-w
1998
Cited 91 times
On the Origin of the Transmission Damage in Lead Tungstate Crystals under Irradiation
physica status solidi (a)Volume 170, Issue 1 p. 47-62 Original Paper On the Origin of the Transmission Damage in Lead Tungstate Crystals under Irradiation A. Annenkov, A. Annenkov Bogoroditsk Techno Chemical Plant, Bogoroditsk, RussiaSearch for more papers by this authorE. Auffray, E. Auffray CERN, SwitzerlandSearch for more papers by this authorM. Korzhik, M. Korzhik Institute for Nuclear Problems, Minsk, BelarusSearch for more papers by this authorP. Lecoq, P. Lecoq CERN, SwitzerlandSearch for more papers by this authorJ.-P. Peigneux, J.-P. Peigneux Laboratoire d'Annecy le Vieux de Physique des Particules, BP 110, Chemin de Bellevue, F-74941 Annecy le Vieux, FranceSearch for more papers by this author A. Annenkov, A. Annenkov Bogoroditsk Techno Chemical Plant, Bogoroditsk, RussiaSearch for more papers by this authorE. Auffray, E. Auffray CERN, SwitzerlandSearch for more papers by this authorM. Korzhik, M. Korzhik Institute for Nuclear Problems, Minsk, BelarusSearch for more papers by this authorP. Lecoq, P. Lecoq CERN, SwitzerlandSearch for more papers by this authorJ.-P. Peigneux, J.-P. Peigneux Laboratoire d'Annecy le Vieux de Physique des Particules, BP 110, Chemin de Bellevue, F-74941 Annecy le Vieux, FranceSearch for more papers by this author First published: 29 January 1999 https://doi.org/10.1002/(SICI)1521-396X(199811)170:1<47::AID-PSSA47>3.0.CO;2-WCitations: 83AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The origin of the transmission damage in PWO crystals is discussed. It is shown that both electron and hole centers created on the basis of structural defects in PbWO4 crystals contributed to the induced absorption of the crystals. The different aspects of the suppression of the recharge processes in PWO scintillation crystals are also discussed. Citing Literature Volume170, Issue1November 1998Pages 47-62 RelatedInformation
DOI: 10.1063/1.120409
1997
Cited 89 times
Decay kinetics and thermoluminescence of PbWO4: La3+
Correlated measurements of emission spectra, photoluminescence and scintillation decays, thermoluminescence, and light yield were performed on a selected set of undoped and La-doped PbWO4 single crystals. The samples were grown from 5N purity raw powders and show the blue emission component only. Distinct influence of La doping was found in the decays, thermoluminescence and light yield characteristics. It is discussed in the light of the direct influence of La doping on suppressing the creation of point defect centers in the PbWO4 lattice, which are involved in the energy transfer and storage processes in this material.
DOI: 10.1016/j.jcrysgro.2010.07.042
2010
Cited 66 times
Bridgman growth and site occupation in LuAG:Ce scintillator crystals
LuAG:Ce single crystals with various activator concentrations were grown by the vertical Bridgman technique. Characterization of crystals was done in terms of actual doping level, macroscopic defects and degree of non-equivalent substitutions by Lu for Al in octahedral lattice sites. Scintillation measurements were performed using 2×2×8 mm3 shaped samples with Ce concentration in the range 0.05–0.55 at%. Essential improvement of performance was demonstrated in samples containing ≥0.2 at% of Ce; the light yield measured in LuAG:Ce (0.55 at%) was about 26000 ph/MeV, or close to that of LSO.
DOI: 10.1016/j.nima.2014.10.020
2015
Cited 50 times
On the comparison of analog and digital SiPM readout in terms of expected timing performance
In time of flight positron emission tomography (TOF-PET) and in particular for the EndoTOFPET-US Project (Frisch, 2013 [1]), and other applications for high energy physics, the multi-digital silicon photomultiplier (MD-SiPM) was recently proposed (Mandai and Charbon, 2012 [2]), in which the time of every single photoelectron is being recorded. If such a photodetector is coupled to a scintillator, the largest and most accurate timing information can be extracted from the cascade of the scintillation photons, and the most probable time of positron emission determined. The readout concept of the MD-SiPM is very different from that of the analog SiPM, where the individual photoelectrons are merely summed up and the output signal fed into the readout electronics. We have developed a comprehensive Monte Carlo (MC) simulation tool that describes the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal. In previous studies we have compared MC simulations with coincidence time resolution (CTR) measurements and found good agreement within less than 10% for crystals of different lengths (from 3 mm to 20 mm) coupled to SiPMs from Hamamatsu. In this work we will use the developed MC tool to directly compare the highest possible time resolution for both the analog and digital readout of SiPMs with different scintillator lengths. The presented studies reveal that the analog readout of SiPMs with microcell signal pile-up and leading edge discrimination can lead to nearly the same time resolution as compared to the maximum likelihood time estimation applied to MD-SiPMs. Consequently there is no real preference for either a digital or analog SiPM for the sake of achieving highest time resolution. However, the best CTR in the analog SiPM is observed for a rather small range of optimal threshold values, whereas the MD-SiPM provides stable CTR after roughly 20 registered photoelectron timestamps in the time estimator.
DOI: 10.1002/pssa.201700798
2018
Cited 46 times
Excitation Transfer Engineering in Ce‐Doped Oxide Crystalline Scintillators by Codoping with Alkali‐Earth Ions
Time‐resolved spectroscopic study of the photoluminescence response to femtosecond pulse excitation and free carrier absorption at different wavelengths, thermally stimulated luminescence measurements and investigation of differential absorption are applied to amend the available data on excitation transfer in GAGG:Ce scintillators, and an electronic energy‐level diagram in this single crystal is suggested to explain the influence of codoping with divalent Mg on luminescence kinetics and light yield. The conclusions are generalized by comparison of the influence of aliovalent doping in garnets (GAGG:Ce) and oxyorthosilicates (LSO:Ce and YSO:Ce). In both cases, the codoping facilitates the energy transfer to radiative Ce 3+ centers, while the light yield is increased in the LYSO:Ce system but reduced in GAGG:Ce.
DOI: 10.1109/tns.2015.2493347
2016
Cited 45 times
Radiation Tolerance of LuAG:Ce and YAG:Ce Crystals Under High Levels of Gamma- and Proton-Irradiation
The extremely harsh conditions, in which the detectors will have to operate during the High Luminosity phase of the Large Hadron Collider at CERN, set stringent requirements on the properties of the scintillators which can be used. Among different scintillating materials under study, inorganic crystals such as LuAG:Ce and YAG:Ce represent good candidates for such application. A detailed investigation of the radiation hardness of LuAG:Ce and YAG:Ce crystal samples (1 ×1 ×1 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> cubes) produced by Crytur is presented in this study. Given their potential in many calorimeter designs, YAG:Ce samples with high aspect ratio ( 1 ×1 ×14 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ) have also been tested. Optical and scintillating properties of the samples were studied before and after irradiation with different sources and at different intensities. Irradiation with gamma-rays to the doses of 1 and 100 kGy and with 24 GeV protons up to an integrated fluence of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">14</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> were performed at CERN. The scintillating properties of the crystals, as emission and excitation spectra and light yield remained unchanged after irradiation and only small levels of induced absorption were observed. The results obtained in this test confirm the potential of LuAG:Ce and YAG:Ce crystals as good candidates for calorimetry applications in future high energy physics experiments.
DOI: 10.3390/cryst8020078
2018
Cited 45 times
Enhancing Light Extraction of Inorganic Scintillators Using Photonic Crystals
Inorganic scintillators are commonly used as sensors for ionizing radiation detectors in a variety of applications, ranging from particle and nuclear physics detectors, medical imaging, nuclear installations radiation control, homeland security, well oil logging and a number of industrial non-destructive investigations. For all these applications, the scintillation light produced by the energy deposited in the scintillator allows the determination of the position, the energy and the time of the event. However, the performance of these detectors is often limited by the amount of light collected on the photodetector. A major limitation comes from the fact that inorganic scintillators are generally characterized by a high refractive index, as a consequence of the required high density to provide the necessary stopping power for ionizing radiation. The index mismatch between the crystal and the surrounding medium (air or optical grease) strongly limits the light extraction efficiency because of total internal reflection (TIR), increasing the travel path and the absorption probability through multiple bouncings of the photons in the crystal. Photonic crystals can overcome this problem and produce a controllable index matching between the crystal and the output medium through an interface made of a thin nano-structured layer of optically-transparent high index material. This review presents a summary of the works aiming at improving the light collection efficiency of scintillators using photonic crystals since this idea was introduced 10 years ago.
DOI: 10.1016/j.actamat.2013.12.040
2014
Cited 44 times
Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics
Under a stationary stable regime undoped and Ce-doped LuAG (Lu3Al5O12) single-crystal fibers were grown by a micro-pulling-down technique. The meniscus length corresponding to the equilibrium state was <200 μm. Fluctuations in the fiber composition and pulling rate were found to have a significant effect on the properties of the fibers grown. A great improvement in the performance was found in samples containing low Ce concentrations (⩽0.1 at.%) and produced using pulling rates <0.5 mm min−1. Under such conditions a good lateral surface fiber quality was obtained and light propagation was significantly improved. Conversely, a high Ce concentration and a high pulling rate resulted in a strong degradation of the fiber surface quality causing defects to appear and a decrease in light output.
DOI: 10.1088/1748-0221/11/10/p10015
2016
Cited 41 times
Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation
Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/CdS GS QDs exhibit a sub-ns value of 849 ps. Further, the respective CdSe NPL and CdSe/CdS GS QD X-ray excited photoluminescence have the emission characteristics of excitons (X) and multiexcitons (MX), with the MXs providing additional prospects for fast timing with substantially shorter lifetimes.
DOI: 10.1063/1.5079300
2019
Cited 39 times
On the structure, synthesis, and characterization of ultrafast blue-emitting CsPbBr3 nanoplatelets
Recent developments in medical imaging techniques, in particular, those in time-of-flight positron emission tomography put new challenges on scintillating material performance that cannot be fulfilled by conventional scintillators. Bright and ultrafast nanoparticles represent promising candidates to build up an advanced detection system needed. We synthesize colloidal CsPbBr3 nanoplatelets emitting blue light with fast sub-nanosecond decay. We also prepare a nanocomposite material by embedding the nanoplatelets in the polystyrene matrix. We show that blue emission is preserved provided the composite is not exposed to UV/vis light and/or elevated temperatures. Motivated by conflicting information from the literature about the room temperature structure of colloidal CsPbX3 (X = Cl, Br, I) particles, that results being orthorhombic, rather than cubic, we perform ab initio electronic structure calculations of bulk crystals with an orthorhombic structure. We calculate optical properties, as well as exciton diameters and binding energies and compare them to those previously obtained for cubic CsPbX3 crystals.
DOI: 10.1109/trpms.2020.3048642
2021
Cited 27 times
TOF-PET Image Reconstruction With Multiple Timing Kernels Applied on Cherenkov Radiation in BGO
Today Time-of-Flight (TOF), in PET scanners, assumes a single, well-defined timing resolution for all events. However, recent BGO-Cherenkov detectors, combining prompt Cherenkov emission and the typical BGO scintillation, can sort events into multiple timing kernels, best described by the Gaussian mixture models. The number of Cherenkov photons detected per event impacts directly the detector time resolution and signal rise time, which can later be used to improve the coincidence timing resolution. This work presents a simulation toolkit which applies multiple timing spreads on the coincident events and an image reconstruction that incorporates this information. A full cylindrical BGO-Cherenkov PET model was compared, in terms of contrast recovery and contrast-to-noise ratio, against an LYSO model with a time resolution of 213 ps. Two reconstruction approaches for the mixture kernels were tested: 1) mixture Gaussian and 2) decomposed simple Gaussian kernels. The decomposed model used the exact mixture component applied during the simulation. Images reconstructed using mixture kernels provided similar mean value and less noise than the decomposed. However, typically, more iterations were needed. Similarly, the LYSO model, with a single TOF kernel, converged faster than the BGO-Cherenkov with multiple kernels. The results indicate that the model complexity slows down convergence. However, due to the higher sensitivity, the contrast-to-noise ratio was 26.4% better for the BGO model.
DOI: 10.1109/trpms.2020.3030483
2021
Cited 24 times
Exploring Cherenkov Emission of BGO for TOF-PET
Bismuth germanate (BGO) was the preferred crystal for positron emission tomography (PET) scanners, but was substituted with the emergence of faster crystals. Improvements in silicon photomultipliers (SiPMs) and the use of fast high frequency readout make it possible to use the prompt Cherenkov emission in BGO in order to boost the achievable coincidence time resolution (CTR) significantly. The large fluctuations in the detected Cherenkov photon yield are causing time or amplitude walk effects in the leading edge time discrimination, which are corrected by measuring the initial signal rise time via a double threshold system. Further a classification of “fast” and “slow” timing events is shown to make best use of all the information and upgrades the CTR for most of the 511-keV events. In order to assess the practicability of this novel approach various crystal geometries and state-of-the-art SiPMs from HPK, Ketek, Broadcom, and FBK have been evaluated with the focus on the applicability in total body PET systems. For typical PET sized crystals (3 × 3 × 20 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ) coupled to area matching 3 × 3-mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> Broadcom SiPMs a time resolution of 261 ± 8 ps full width at half maximum (FWHM) was measured when applying time walk corrections, while the CTR of individual types of events with different Cherenkov yield range from 205 to 302-ps FWHM. A further thorough discussion and prospects of TOF-PET with BGO are given, especially in view of timing event classification of all detected 511-keV events, corresponding to various time of flight kernels ranging from high to low time resolution.
DOI: 10.1002/admi.202300659
2024
Nanocrystalline Lead Halide Perovskites to Boost Time‐of‐Flight Performance of Medical Imaging Detectors
Abstract Time‐of‐flight (TOF) technique, traditionally used in high energy physics (HEP) and positron emission tomography (PET), is now being explored for lower energy applications like computed tomography (CT). Regardless of the application, pushing the current boundaries in time resolution calls for novel technologies and materials exhibiting ultra‐fast time response. Semiconductor nanocrystals like cesium lead halide perovskites (CsPbBr 3 ), benefiting from quantum confinement effects, feature ultra‐fast decay and, when combined with a suitable bulk scintillator following a heterostructure concept, can also provide the necessary stopping power. In this work, thin films of CsPbBr 3 on top of BGO, LYSO:Ce, and GAGG:Ce,Mg wafers are fabricated to test their impact on the single crystal scintillator time resolution under soft X‐rays excitation (about 10 keV). It is demonstrated that the CsPbBr 3 layer significantly improves the overall time resolution in all cases, achieving up to a tenfold improvement with BGO and GAGG:Ce,Mg. Under 511 keV γ‐rays, a proof‐of‐concept of the heterostructure design for TOF‐PET using CsPbBr 3 thin film deposited on GAGG:Ce,Mg bulk crystal is successfully tested. Shared events depositing energy in both materials are identified, resulting in more than twofold improved coincidence time resolution: 118 ± 4 ps full‐width‐at‐half‐maximum (FWHM) compared to the 272 ± 8 ps of solely GAGG:Ce,Mg.
DOI: 10.1016/s0168-9002(96)00806-6
1996
Cited 69 times
Extensive studies on CeF3 crystals, a good candidate for electromagnetic calorimetry at future accelerators
In the framework of its search for new heavy, fast and radiation hard scintillators for calorimetry at future colliders, the Crystal Clear Collaboration performed a systematic investigation of the properties and of the scintillation and radiation damage mechanisms of CeF3 monocrystals. Many samples of various dimensions up to 3 × 3 × 28 cm3 were produced by industry and characterised in the laboratories by different methods such as: optical transmission, light yield and decay time measurements, excitation and emission spectra, gamma and neutron irradiations. The results of these measurements are discussed. The measured light yield is compared to the theoretical expectations. Tests in high energy electron beams on a crystal matrix were also performed. The suitability of CeF3 for calorimetry at high rate machines is confirmed. Production and economical considerations are discussed.
DOI: 10.1016/j.jcrysgro.2012.09.046
2012
Cited 48 times
Radiation hardness of LuAG:Ce and LuAG:Pr scintillator crystals
Single crystals of LuAG:Ce, LuAG:Pr and un-doped LuAG were grown by the vertical Bridgman method and studied for radiation hardness under gamma-rays with doses in the range 10–105 Gy (60Co). A wide absorption band peaking at around 600 nm springs up in all three types of crystals after the irradiations. The second band peaking at around 375 nm appears in both LuAG:Pr and un-doped LuAG. Compositional variations have been done to reveal the spectral behavior of induced color centers in more detail and to understand their origin. Similarities in behavior of Yb2+ centers in as-grown garnets are found, indicating that radiation induced color centers can be associated with residual trace amounts of Yb present in the raw materials. Un-doped LuAG and LuAG:Ce demonstrate moderate radiation hardness (the induced absorption coefficients being equal to 0.05–0.08 cm−1 for accumulated doses of 103–104 Gy), while LuAG:Pr is less radiation hard. The ways to improve the radiation hardness are discussed.
DOI: 10.1109/tns.2012.2184556
2012
Cited 40 times
Results of Photonic Crystal Enhanced Light Extraction on Heavy Inorganic Scintillators
A major challenge for future particle physics experiments and nuclear medicine imaging applications will be the improvement of energy and time resolution of the detector systems. Both parameters are strongly correlated with the number of photoelectrons which can be registered after a particle has deposited its energy in the scintillator. One problem in heavy scintillating materials is that a large fraction of the light produced inside the bulk material is trapped inside the crystal due to total internal reflection. Recent developments in the area of nanophotonics show that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the scintillator. Photonic crystals are optical materials which can affect the propagation of light in multiple ways. In this work, the PhC is used for the extraction of photons which are otherwise reflected within the scintillator. Our simulations show light output improvements for a wide range of scintillating materials due to light scattering effects of the photonic grating. In the practical part of the work we show how we were producing first samples of PhC slabs on top of different scintillators to confirm the simulation results by measurements. Through the deposition of an auxiliary layer of silicon nitride and the adaptation of the standard electron beam lithography (EBL) parameters we could successfully produce several PhC slabs on top of 1.2 mm × 2.6 mm × 5 mm lutetium oxyorthosilicate (LSO) scintillators. In the characterization process we show a 30-60% light yield improvement of the different PhC designs when compared to an unstructured reference scintillator, which is also in close accordance with our simulation results.
DOI: 10.1109/tns.2013.2270089
2013
Cited 38 times
A Comprehensive &amp; Systematic Study of Coincidence Time Resolution and Light Yield Using Scintillators of Different Size and Wrapping
Over the last years, interest in using time-of-flightbased Positron Emission Tomography (TOF-PET) systems has significantly increased.High time resolution in such PET systems is a powerful tool to improve signal to noise ratio and therefore to allow smaller exposure rates for patients as well as faster image acquisition.Improvement in coincidence time resolution (CTR) in PET systems to the level of 200 ps FWHM requires the optimization of all parameters in the photon detection chain influencing the time resolution: crystal, photodetector and readout electronics.After reviewing the factors affecting the time resolution of scintillators, we will present in this paper the light yield and CTR obtained for different scintillator types (LSO:Ce, LYSO:Ce, LGSO:Ce, LSO:Ce:0.4Ca,LuAG:Ce, LuAG:Pr) with different cross-sections, lengths and reflectors.Whereas light yield measurements were made with a classical PMT, all CTR tests were performed with Hamamatsu-MPPCs S10931-050P.The CTR measurements were based on the time-over-threshold method in a coincidence setup using the ultra fast amplifier-discriminator chip NINO and a fast oscilloscope.Strong correlations between light yield and CTR were found.Excellent results have been obtained for LYSO crystals of 2 2 10 mm and LYSO pixels of 0.75 0.75 10 mm with a CTR of 175 ps and 188 ps FWHM, respectively.Index Terms-Lutetium-aluminum garnets, lutetium-oxy-orthosilicate (LSO), multi-pixel photon counters (MPPCs), silicon photomultipliers (SiPM), time-based readout, time-over-threshold discrimination. I. INTRODUCTIONT IME of flight in PET has become, as a result of the emer- gence of fast silicon photomultipliers (SiPMs), an increasingly attractive instrument to enhance the quality of medical imaging with far reaching impacts on patient care and hospital expenditures.Furthermore, certain diagnostic methods such as novel endoscopic interventions employing PET in addition to
DOI: 10.1016/j.jlumin.2016.05.015
2016
Cited 35 times
Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals
The time resolution of scintillation detectors of ionizing radiation is one of the key parameters sought for in the current and future high-energy physics experiments. This study is encouraged by the necessity to find novel detection methods enabling a sub-10-ps time resolution in scintillation detectors and is focused on the exploitation of fast luminescence rise front. Time-resolved photoluminescence (PL) spectroscopy and thermally stimulated luminescence techniques have been used to study two promising scintillators: self-activated lead tungstate (PWO, PbWO4) and Ce-doped gadolinium aluminum gallium garnet (GAGG, Gd3Al2Ga3O12). A sub-picosecond PL rise time is observed in PWO, while longer processes in the PL response in GAGG:Ce are detected and studied. The mechanisms responsible for the PL rise time in self-activated and doped scintillators are under discussion.
DOI: 10.1016/j.nima.2017.07.015
2017
Cited 35 times
Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator
The influence of co-doping of Gd3Al2GA3O12:Ce (GAGG:Ce) scintillator with magnesium on the rise time of luminescence response was studied in two GAGG:Ce crystals grown in nominally identical conditions except of Mg co-doping in one of them. Time-resolved photoluminescence spectroscopy and free carrier absorption techniques were exploited. It is evidenced that the Mg co-doping decreases the rise time down to sub-picosecond domain. Meanwhile, the light yield decreases by ∼20%. Thus, the feasibility of exploitation of the fast rise edge in luminescence response for ultrafast timing in scintillation detectors is demonstrated. The role of Mg impurities in facilitating the excitation transfer to radiative recombination centers is discussed.
DOI: 10.1016/j.nima.2017.02.008
2017
Cited 33 times
Timing capabilities of garnet crystals for detection of high energy charged particles
Particle detectors at future collider experiments will operate at high collision rates and thus will have to face high pile up and a harsh radiation environment. Precision timing capabilities can help in the reconstruction of physics events by mitigating pile up effects. In this context, radiation tolerant, scintillating crystals coupled to silicon photomultipliers (SiPMs) can provide a flexible and compact option for the implementation of a precision timing layer inside large particle detectors. In this paper, we compare the timing performance of aluminum garnet crystals (YAG: Ce, LuAG: Ce, GAGG: Ce) and the improvements of their time resolution by means of codoping with Mg2+ ions. The crystals were read out using SiPMs from Hamamatsu glued to the rear end of the scintillator and their timing performance was evaluated by measuring the coincidence time resolution (CTR) of 150 GeV charged pions traversing a pair of crystals. The influence of crystal properties, such as density, light yield and decay kinetics on the timing performance is discussed. The best single detector time resolutions are in the range of 23–30 ps (sigma) and only achieved by codoping the garnet crystals with divalent ions, such as Mg2+. The much faster scintillation decay in the co-doped samples as compared to non co-doped garnets explains the higher timing performance. Samples of LSO: Ce, Ca and LYSO:Ce crystals have also been used as reference time device and showed a time resolution at the level of 17 ps, in agreement with previous results.
DOI: 10.1016/j.jlumin.2018.02.027
2018
Cited 31 times
Scintillation yield of hot intraband luminescence
Cathodoluminescence yield of hot intraband luminescence (IBL) under ∼100 keV pulsed electron excitation was evaluated in several halide and oxide compounds. Its values lie in the range of 5–35 ph/MeV, which is in accordance with the general assumptions on the mechanism of IBL. The expected inverse correlation between the IBL yield and highest phonon energies was found for binary compounds, therefore the IBL yield dependence on charge carrier thermalisation rate was experimentally confirmed. Consequently, CsI was found to have the highest IBL yield (33 ph/MeV) compared to other studied crystals due to its lowest phonon energy among them. The studied sample of pure CsI shows both cathodoluminescence and scintillation yields significantly higher than the value frequently cited earlier (2000 ph/MeV), pointing out that its intrinsic scintillation properties might be currently underestimated. CsI shows good coincidence time resolution (CTR) up to 110 ps FWHM in a TOF-PET-like geometry, which surpasses all the materials studied so far except the much more expensive scintillators from the lutetium-yttrium silicates family (CTR values up to 73 ps). Therefore, CsI can be considered as a promising material for low-cost TOF-PET machines. For complex (ternary) compounds the phonon energies and IBL yield are not noticeably correlated, and the highest spectral yield (at 2.5 eV) among the studied compounds is shown by Na2Mo2O7.
DOI: 10.1016/j.jlumin.2019.116613
2019
Cited 30 times
Light yield of scintillating nanocrystals under X-ray and electron excitation
In the field of fast timing research, direct-band-gap-engineered semiconductor nanostructures have shown high potential as a new source of prompt photon emission, different from Cherenkov and hot intraband luminescence. In these types of materials, quantum confinement of electron-hole pairs and coherent exciton states play a significant role in enhancing the dipole moment of the absorption and emission transitions. Thus they provide a sub-1 ns radiative decay component, critical to improve state-of-the-art time resolution of current bulk classical scintillators. However, the efficiency of this fast emission processes have not been determined so far in terms of number of photons emitted per energy deposited in the keV range. In this contribution, we propose several methods to determine the light yield of different nano-scintillating structures in order to understand their potential as radiation detectors for fast timing applications. These methods have been implemented using samples of a broad spectrum regarding synthesis, fabrication and preparation methods as well as registered scintillation efficiency, using both X-ray and electron excitation.
DOI: 10.1063/5.0022162
2020
Cited 24 times
CMOS-compatible all-dielectric metalens for improving pixel photodetector arrays
Metasurfaces and, in particular, metalenses have attracted large interest and enabled various applications in the near-infrared and THz regions of the spectrum. However, the metalens design in the visible range stays quite challenging due to the smaller nanostructuring scale and the limited choice of lossless CMOS-compatible materials. We develop a simple yet efficient design of a polarization-independent, broadband metalens suitable for many CMOS-compatible fabrication techniques and materials and implement it for the visible spectral range using niobium pentoxide (Nb2O5). The produced metalens demonstrates high transmittance and focusing ability as well as a large depth of focus, which makes it a promising solution for a new generation of silicon photomultiplier photodetectors with reduced fill factor impact on the performance and reduced electron–hole generation regions, which altogether potentially leads to improved photodetection efficiency and other characteristics.
DOI: 10.1088/1361-6560/ac212a
2021
Cited 21 times
A roadmap for sole Cherenkov radiators with SiPMs in TOF-PET
Time of flight positron emission tomography can strongly benefit from a very accurate time estimator given by Cherenkov radiation, which is produced upon a 511 keV positron-electron annihilation gamma interaction in heavy inorganic scintillators. While time resolution in the order of 30 ps full width at half maximum (FWHM) has been reported using MCP-PMTs and black painted Cherenkov radiators, such solutions have several disadvantages, like high cost and low detection efficiency of nowadays available MCP-PMTs. On the other hand, silicon photomultipliers (SiPMs) are not limited by those obstacles and provide high photon detection efficiency with a decent time response. Timing performance of PbF2crystals of various lengths and surface conditions coupled to SiPMs was evaluated against a reference detector with an optimized test setup using high-frequency readout and novel time walk correction, with special attention on the intrinsic limits for one detected Cherenkov photon only. The average number of detected Cherenkov photons largely depends on the crystal surface state, resulting in a tradeoff between low photon time spread, thus good timing performance, and sensitivity. An intrinsic Cherenkov photon yield of 16.5 ± 3.3 was calculated for 2 × 2 × 3 mm3sized PbF2crystals upon 511 keVγ-deposition. After time walk correction based on the slew rate of the signal, assuming two identical detector arms in coincidence, and using all events, a time resolution of 215 ps FWHM (142 ps FWHM) was obtained for 2 × 2 × 20 mm3(2 × 2 × 3 mm3) sized PbF2crystals, compared to 261 ps (190 ps) without correction. Selecting on one detected photon only, a single photon coincidence time resolution of 113 ps FWHM for black painted and 166 ps for Teflon wrapped crystals was measured for 3 mm length, compared to 145 ps (black) and 263 ps (Teflon) for 20 mm length.
DOI: 10.1016/j.nima.2021.165231
2021
Cited 19 times
Scintillation properties and timing performance of state-of-the-art Gd<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1021" altimg="si7.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>Al<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1029" altimg="si86.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>Ga<mml:math xmlns:mml="http://www.w3.org/1998/Math/…
Future colliders will set stringent requirements on the performance of detector materials in terms of timing and radiation hardness. Scintillating garnet crystals proved to satisfy the latter, while the former can be improved through technological developments. In this work, optical and scintillation properties of Cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) single crystals were studied upon gamma radiation excitation. Several 2x2x3 mm3 and 2x2x10 mm3 samples from various producers were characterized in terms of light output, transmission, scintillation kinetics and coincidence time resolution (CTR). Light output was measured using a 137Cs radioactive source, ranging between 27900 and 49500 photons per MeV. Scintillation emission time profiles were measured with 511 keV gamma excitation, and the fastest samples displayed components below 70 ps rise time and 50 ns decay time. CTR was measured employing silicon photomultipliers (SiPMs) obtaining a best value of 87 ± 2 ps full width at half maximum, significantly improving on past state-of-the-art GAGG.
DOI: 10.1016/j.nima.2022.167629
2023
Cited 4 times
Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres
A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) and Y3Al5O12 (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution was studied as a function of the incidence angle of the beam and found to be of the order of 10%/E⊕1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 ± 0.2) ps at 5 GeV.
DOI: 10.1016/s0168-9002(97)01088-7
1998
Cited 71 times
Improvement of several properties of lead tungstate crystals with different doping ions
A very good radiation resistance of lead tungstate crystals is mandatory for their use in the high-precision electromagnetic calorimeter of the CMS experiment at LHC. Since the beginning of 1996 we have organised systematic investigations of the parameters influencing the radiation hardness of this crystal. Two classes of parameters have been particularly studied, the first one related to the control of the stoichiometry and structure-associated defects, the second one connected with the suppression and the charge compensation of existing defects with different kinds of doping ions. This paper reports about the second part of this study and complements a first paper where the role of the stoichiometry was already discussed. Results of tests are given on a significant statistical sample of full size crystals (23 cm) which show a considerable improvement in the optical properties and the radiation resistance of appropriately doped crystals.
DOI: 10.1016/0168-9002(96)00717-6
1996
Cited 65 times
Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry
The article is an overview of the research activity made in the framework of the Crystal Clear Collaboration aimed at obtaining scintillating glasses able to fit the constraints imposed for the active medium of the central Electromagnetic Calorimeter at CMS. The manufacturing of heavy metal fluoride glasses doped with Ce3+ is discussed. The luminescence and scintillation characteristics as well as the radiation hardness properties are extensively studied in the case of Ce doped fluorohafnate, found to be the most convenient glass scintillator for high energy physics applications.
DOI: 10.1109/23.958730
2001
Cited 62 times
Progress in the development of LuAlO/sub 3/-based scintillators
LuAP:Ce and mixed LuYAP:Ce crystals are the promoted scintillation materials for positron emission tomography. These scintillators are presently being studied in three directions: 1) growth of large crystals with stable properties; 2) establishment of relationships between the composition of LuYAP:Ce crystals and the scintillation properties; and 3) scintillation mechanisms in lutetium compounds. We performed the first bunch of 16 LuYAP:Ce crystals with size for the detector module (2/spl times/2/spl times/10 mm/sup 3/). The crystals show good correlation among growth parameters, light yield, and transmission spectra. To clarify the scintillation mechanism in LuAP:Ce and LuYAP:Ce crystals, measurements of absorption, emission, and excitation spectra of thermoluminescence and scintillation decay curves have been performed.
DOI: 10.1109/tns.2008.922827
2008
Cited 51 times
Probing the Concepts of Photonic Crystals on Scintillating Materials
The high refractive index of current scintillating materials puts severe restrictions on their effective light yield. In this paper, we describe an approach that uses a photonic crystal pattern machined into the coupling face of the scintillator to partly overcome the problem of total internal reflection. Simulations are performed for 2 mm times 2 mm times 8 mm LuAP and LSO pixels with and without photonic crystal and different types of wrapping. It is shown that by tuning the structure of the photonic crystal and the size of its elements, the extraction efficiency of the surface can be significantly improved compared to a plain exit surface.
DOI: 10.1016/j.nima.2010.07.007
2011
Cited 41 times
Photonic crystals: A novel approach to enhance the light output of scintillation based detectors
Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high electronic density, resulting in a large index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent studies have shown that those limits can be overcome by means of light scattering effects of photonic crystals (PhCs). In our simulations we could show light yield improvements between 90% and 110% when applying PhC structures to different scintillator materials. To evaluate the results, a PhC modified scintillator was produced in cooperation with the NIL (Nanotechnology Institute of Lyon). By using silicon nitride (Si3N4) as a transfer material for the PhC pattern and a 70 nm thick Indium Tin Oxide (ITO) layer for the electrical conductivity during the lithography process, we could successfully fabricate first samples of PhC areas on top of LYSO crystals.
DOI: 10.1016/j.nima.2013.01.047
2013
Cited 37 times
SiPM time resolution: From single photon to saturation
The time resolution of photon detection systems is important for a wide range of applications in physics and chemistry. It impacts the quality of time-resolved spectroscopy of ultrafast processes and has a direct influence on the best achievable time resolution of time-of-flight detectors in high-energy and medical physics. For the characterization of photon detectors, it is important to measure their exact timing properties in dependence of the photon flux and the operational parameters of the photodetector and its accompanying electronics. We report on the timing of silicon photomultipliers (SiPM) as a function of their bias voltage, electronics threshold settings and the number of impinging photons. We used ultrashort laser pulses at 400 nm wavelength with pulse duration below 200 fs. We focus our studies on different types of SiPMs (Hamamatsu MPPC S10931-025P, S10931-050P and S10931-100P) with different SPAD sizes (25μm, 50μm and 100μm) coupled to the ultrafast discriminator amplifier NINO. For the SiPMs, an optimum in the time resolution regarding bias and threshold settings can be reached. For the 50μm type, we achieve a single photon time resolution of 80 ps sigma, and for saturating photon fluxes better than 10 ps sigma.
DOI: 10.1088/1748-0221/8/09/p09019
2013
Cited 35 times
Single crystalline LuAG fibers for homogeneous dual-readout calorimeters
For the next generation of calorimeters, designed to improve the energy resolution of hadrons and jets measurements, there is a need for highly granular detectors requiring peculiar geometries. Heavy inorganic scintillators allow compact homogeneous calorimeter designs with excellent energy resolution and dual-readout abilities. These scintillators are however not usually suited for geometries with a high aspect ratio because of the important losses observed during the light propagation. Elongated single crystals (fibers) of Lutetium Aluminium garnet (LuAG, Lu3Al5O12) were successfully grown with the micropulling-down technique. We present here the results obtained with the recent fiber production and we discuss how the light propagation could be enhanced to reach attenuation lengths in the fibers better than 0.5 m.
DOI: 10.1109/tns.2012.2183890
2012
Cited 34 times
Effect of Aspect Ratio on the Light Output of Scintillators
The influence of the geometry of the scintillators is presented in this paper. We focus on the effect of narrowing down the section of crystals that have a given length. The light output of a set of crystals with very similar scintillating properties but different geometries measured with several coupling/wrapping configurations is provided. We observe that crystals shaped in thin rods have a lower light output as compared to bulk or sliced crystals. The effect of unpolishing the crystal faces is also investigated, and it is shown that highest light outputs are not necessarily obtained with crystals having all faces polished. Simulation results based on a realistic model of the crystal that implements light scattering on the crystal edges are in agreement with the experimental data. Fine-tuning of this model would allow us to further explore the details of light propagation in scintillators and would be highly valuable to fast timing detection and highly granular detectors.
DOI: 10.1039/c6ce02330d
2017
Cited 28 times
Engineering of bulk and fiber-shaped YAGG:Ce scintillator crystals
Composition-property correlations have been systematically studied in the full concentration range of Y3Al5−xGaxO12:Ce (YAGG:Ce) scintillator crystals. The most promising compositions for new high energy physics experiments at colliders have been determined with the light output >200% relative to BGO and fast luminescence decay. Codoping with Ca2+ provides the decrease of phosphorescence intensity to 0.2% after 0.6 μs and shortening of the luminescence decay constant to 21 ns. Factors affecting the scintillation decay time in YAGG:Ce have been discussed. The crystals show weak transmission loss under γ-irradiation. The feasibility to produce YAGG:Ce fibers using the μ-PD method has been shown.
DOI: 10.1016/j.nima.2021.165762
2021
Cited 17 times
Multipurpose Ce-doped Ba-Gd silica glass scintillator for radiation measurements
A new inorganic scintillation material based on Ba-Gd silica glass doped with cerium (BGS) is fabricated and studied. With the highest light yield among heavy glasses at the level of 2500 ph/MeV and fast scintillation response, the new scintillator ensures a good coincidence time resolution of < 230 ps FWHM for 511 keV γ-quanta from a 22Na source and SiPM readout. In addition to good performance in γ-quanta detection, the material demonstrates capability for efficient detection of low-energetic​ neutrons. The scintillator is produced by exploiting the standard industrial glass technology, which allows for an unlimited scaling up the conversion of raw material into a high-quality scintillator at a high rate. The glass can be casted in application-specific molds, so minimizing the material losses. The presented glass scintillator has potential for further improvement of its light output and scintillation response time.
DOI: 10.1016/j.heliyon.2022.e09754
2022
Cited 11 times
Design rules for time of flight Positron Emission Tomography (ToF-PET) heterostructure radiation detectors
Despite the clinical acceptance of ToF-PET, there is still a gap between the technology's performance and the end-user's needs. Core to bridging this gap is the ability to develop radiation detectors combining a short attenuation length and a sub-nanosecond time response. Currently, the detector of choice, Lu2SiO5:Ce3+ single crystal, is not selected for its ability to answer the performance needs, but as a trade-off between requirements and availability. To bypass the current performance limitations, in particular restricted time response, the concept of the heterostructured detector has been proposed. The concept aims at splitting the scintillation mechanisms across two materials, one acting primarily as an absorber and one as an ultra-fast emitter. If the concept has attracted the interest of the medical and material communities, little has been shown in terms of the benefits/limitations of the approach. Based on Monte Carlo simulations, we present a survey of heterostructure performance versus detector design. The data allow for a clear understanding of the design/performance relationship. This, in turn, enables the establishment of design rules toward the development and optimization of heterostructured detectors that could supersede the current detector technology in the medical imaging field but also across multiple sectors (e.g. high-energy physics, security).
DOI: 10.1039/d2ma00626j
2022
Cited 11 times
Compositional engineering of multicomponent garnet scintillators: towards an ultra-accelerated scintillation response
A Czochralski-grown single crystal of GAGG:Ce,Mg allows for a high Ce dopant and Mg codopant concentration in the crystal, resulting in acceleration of scintillation decay down to several nanoseconds at the expense of light yield.
DOI: 10.3389/fphy.2022.785627
2022
Cited 10 times
Time Resolution Studies of Thallium Based Cherenkov Semiconductors
In the context of improving the detector performance of time-of-flight positron emission tomography (TOF-PET), the combination of charge induction readout and prompt Cherenkov photon production in semiconductor materials can lead to an outstanding detector performance in energy, timing, and spatial resolution. Energy resolutions as good as 1.2% at 662 keV and 5% at 122 keV are reported for pixel thallium bromide (TlBr) detectors. The high refractive index of Tl-based materials, between 2.3 and 2.6, leads to a high Cherenkov photon generation yield but can also challenge photon extraction, potentially affecting the time performance. In this work, the timing properties of TlBr and thallium chloride (TlCl) crystals of different geometries are measured using an optimized test setup with high-frequency readout electronics. A coincidence time resolution (CTR) value of 167 ± 6 ps FWHM is achieved using a 3 × 3 × 3 mm 3 black-painted TlBr crystal. In order to assess potential improvements, a Geant4-based simulation tool kit is developed and validated against experimental measurements. The simulation tool kit is used to predict the contributions limiting the time resolution regarding the crystal and photodetector properties, highlighting the potential of such materials. Finally, paths to further improve the detector performance in TOF-PET are discussed.
DOI: 10.1063/5.0093606
2022
Cited 10 times
Sub-100-picosecond time resolution from undoped and Li-doped two-dimensional perovskite scintillators
Fast hybrid organic–inorganic two-dimensional (2D) perovskite scintillators with high light yield are measured for their scintillating properties. With a light yield of 17 300 ± 2140 photons/MeV, undoped PEA2PbBr4 crystals already exhibit 100 ± 4 ps coincidence time resolution (CTR) at 511 keV excitation. However, Li-doped PEA2PbBr4 crystals have improved the light yield to 21 400 ± 2140 photons/MeV and showed sub-100 ps CTR. Such CTR values and low-cost manufacturing processes make these 2D perovskite scintillators as promising competitors for commercial lanthanide scintillators in time-of-flight positron emission tomography and for fast timing detectors.
DOI: 10.1016/0168-9002(93)90296-t
1993
Cited 48 times
Further results on cerium fluoride crystals
A systematic investigation of the properties of cerium fluoride monocrystals has been performed by the “Crystal Clear” collaboration in view of a p
DOI: 10.1140/epjcd/s2006-02-002-x
2006
Cited 45 times
Reconstruction of the signal amplitude of the CMS electromagnetic calorimeter
The amplitude of the signal collected from the PbWO4 crystals of the CMS electromagnetic calorimeter is reconstructed by a digital filtering technique. The amplitude reconstruction has been studied with test beam data recorded from a fully equipped barrel supermodule. Issues specific to data taken in the test beam are investigated, and the implementation of the method for CMS data taking is discussed.
DOI: 10.1109/tns.2011.2105279
2011
Cited 30 times
Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging
Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).
DOI: 10.1016/j.nima.2013.04.065
2013
Cited 28 times
Radiation damage of LSO crystals under γ- and 24GeV protons irradiation
Irradiation damage of undoped and low Ce doped lutetium oxyorthosilicate has been investigated. Crystals were irradiated with both a 60Co γ-quanta source with an absorbed dose of 2000 Gy and, at CERN PS, a high-rate 24 GeV proton beam with a fluence of ∼3.6×1013 p/cm2. Both irradiations produced a similar set of induced absorption bands. However, a shift of the fundamental absorption spectrum cutoff appears after proton irradiation, but not in the case of the γ-irradiation. The observed shift of the band edge in the transmission spectrum following proton irradiation in lutetium oxyorthosilicate crystals indicates that this phenomenon is a general property of heavy crystalline materials. A possible proton-induced transmission damage mechanism is discussed.
DOI: 10.1088/1748-0221/8/04/c04002
2013
Cited 28 times
EndoTOFPET-US: a novel multimodal tool for endoscopy and positron emission tomography
The EndoTOFPET-US project aims to develop a multimodal detector to foster the development of new biomarkers for prostate and pancreatic tumors. The detector will consist of two main components: an external plate, and a PET extension to an endoscopic ultrasound probe. The external plate is an array of LYSO crystals read out by silicon photomultipliers (SiPM) coupled to an Application Specific Integrated Circuit (ASIC). The internal probe will be an highly integrated and miniaturized detector made of LYSO crystals read out by a fully digital SiPM featuring photosensor elements and digital readout in the same chip. The position and orientation of the two detectors will be tracked with respect to the patient to allow the fusion of the metabolic image from the PET and the anatomic image from the ultrasound probe in the time frame of the medical procedure. The fused information can guide further interventions of the organ, such as biopsy or in vivo confocal microscopy.
DOI: 10.1109/tns.2016.2527738
2016
Cited 26 times
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation
The determination of the intrinsic light yield (LY <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">int</sub> ) of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum efficiency (QE) of the PMT. The total number of optical photons produced per energy deposited was found to be 40000 ph/MeV ± 9% (syst) ±3% (stat) for LYSO. Simulations using Geant4 were successfully compared to light output measurements of 2 × 2 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> section crystals with lengths of 5-30 mm, in order to validate the light transport model and set a limit on Light Transfer Efficiency estimations.
DOI: 10.1016/j.nima.2016.05.030
2016
Cited 26 times
Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout
Precise timing capability will be a key aspect of particle detectors at future high energy colliders, as the time information can help in the reconstruction of physics events at the high collision rate expected there. Other than being used in detectors for PET, fast scintillating crystals coupled to compact Silicon Photomultipliers (SiPMs) constitute a versatile system that can be exploited to realize an ad-hoc timing device to be hosted in a larger high energy physics detector. In this paper, we present the timing performance of LYSO:Ce and LSO:Ce codoped 0.4% Ca crystals coupled to SiPMs, as measured with 150 GeV muons at the CERN SPS H2 extraction line. Small crystals, with lengths ranging from 5 mm up to 30 mm and transverse size of 2×2mm2 or 3×3mm2, were exposed to a 150 GeV muon beam. SiPMs from two different companies (Hamamatsu and FBK) were used to detect the light produced in the crystals. The best coincidence time resolution value of (14.5±0.5)ps, corresponding to a single-detector time resolution of about 10 ps, is demonstrated for 5 mm long LSO:Ce,Ca crystals coupled to FBK SiPMs, when time walk corrections are applied.
DOI: 10.1016/j.jcrysgro.2015.08.019
2015
Cited 24 times
A study of radiation effects on LuAG:Ce(Pr) co-activated with Ca
Single crystals of LuAG:Ce co-doped with Ca2+ were grown by the vertical Bridgman method and studied for optical properties, γ-irradiation induced absorption, scintillation light yield and decay. It is shown that addition of Ca2+ may efficiently limit the radiation induced absorption associated with presence of trace amounts of Yb. In bulk crystals with balanced Ca2+/Ce concentration the absorption induced in the emission range around 520 nm is less than 1 m−1, after the dose 1 kGy and 860 Gy/h dose rate. The light yield of LuAG:Ce upon co-doping with Ca2+ is preserved, while the fraction of the delayed recombination leading to slow scintillation components is decreased. The effects of Ca2+ were not favorable in Pr-doped LuAG studied so far. The absorption induced in the emission range around 300–400 nm range in the Ca-free LuAG:Pr, after the irradiation dose 1 kGy, is about 35 m−1, while it is above 100 m−1 in the Ca co-doped LuAG:Pr.
DOI: 10.1016/j.jlumin.2017.10.005
2018
Cited 23 times
Measurement of non-equilibrium carriers dynamics in Ce-doped YAG, LuAG and GAGG crystals with and without Mg-codoping
Non-linear absorption spectroscopy in pump and probe configuration has been used to test the population of non-equilibrium carriers in Ce-doped Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), and Gd3AlxGa(5-x)O12 (GAGG) crystals with and without codoping by Mg2+ ions. A faster rise time of the induced optical density has been observed in all crystals codoped with Mg with respect to that in Mg-free samples. A significant difference in the time evolution of the differential optical density in GAGG with respect to YAG and LuAG crystals has also been measured. In both GAGG:Ce and GAGG:Ce,Mg an absorption band with maximum in the blue-green range and a decay time of 1.4 ps is present. This band is due to the absorption by free electrons before they are trapped or re-captured by Ce3+ ions. A broad absorption band in the yellow-red region with very short rise time and a decay time longer than 150 ps has been observed in all the Ce-doped garnets under study and can be attributed to the absorption from the Ce3+ excited states.
DOI: 10.1016/j.jpcs.2020.109356
2020
Cited 20 times
Improvement of the timing properties of Ce-doped oxyorthosilicate LYSO scintillating crystals
The aim of this work has been to improve the time resolution of radiation detectors for future high-energy physics experiments and medical imaging applications. Ce-doped oxyorthosilicate Lu2SiO5:Ce (LSO) and mixed oxyorthosilicate Lu1.6Y0.4SiO5:Ce (LYSO) have been investigated as prospective scintillators for such high-time-resolution applications. A differential optical absorption technique with sub-picosecond time resolution upon selective excitation of Ce3+ ions to different excited states has been adopted to study carrier dynamics in these scintillators, and coincidence time resolution measured using 511 keV γ-quanta has been exploited to test their timing properties. A delay in population of the emitting level of Ce3+ has been observed, and is interpreted in terms of electron trapping, which is more pronounced in mixed yttrium-containing LYSO crystals due to composition fluctuations. It is shown that the delay, which affects the luminescence response time, can be eliminated by co-doping of LYSO:Ce with calcium at concentrations as low as 5 ppm. The faster kinetics of electron transfer correlates with a better coincidence time resolution. Thermalization and spatial distribution of non-equilibrium carriers has been studied theoretically to link the results obtained by the time-resolved differential optical absorption technique with the behavior of the non-equilibrium carriers generated by irradiation.
DOI: 10.1088/1361-6560/ab78bf
2020
Cited 20 times
Time-of-flight computed tomography - proof of principle
Computed tomography has greatly improved over the last decade, especially through x-ray dose exposure reduction while maintaining image quality. Herein, a new concept is proposed to improve the contrast-to-noise ratio (CNR) by including the time-of-flight (TOF) information of individual photons to obtain further insight on the photon's trajectory and to reject scatter contribution. The proof of the concept relies on both simulation and experimental measurements in a cone-beam computed tomography arrangement. Results show a statistical difference between the TOF of scattered and primary photons exploitable in TOF computed tomography. For a large volume of the size of a human abdomen, a scatter reduction from 296% to 4% is achieved in our simulation setup with perfect timing measurements which yields a 110% better CNR, or a dose reduction by a factor of four. Cup artifacts are also reduced from 24.7% to 0.8%, and attenuation inaccuracies are improved from −26.3% to −0.8%. With 100 ps and 10 ps FWHM timing jitters, respectively 75% and 95% of the scatter contribution can be removed with marginal gains below 10 ps. Experimental measurements confirm the feasibility of measuring statistical differences between the TOF of scattered and primary photons.
DOI: 10.3389/fphy.2020.592875
2020
Cited 18 times
Exploiting Cross-Luminescence in BaF2 for Ultrafast Timing Applications Using Deep-Ultraviolet Sensitive HPK Silicon Photomultipliers
Time resolution of scintillation-based detectors is becoming continuously more important. In medical applications, especially in positron emission tomography (PET), better time of flight (TOF) information of the emitted gammas leads to a higher signal-to-noise ratio in the reconstructed image. Benefits are lower doses applied to and/or shorter scanning times for the patient. In high energy physics (HEP) ultrafast timing becomes increasingly important for reducing pile up effects in future high luminosity colliders and therefore increasing the detector sensitivity in the search for rare events and new physics. This article is an initial study on exploiting the fast cross-luminescence emission in the inorganic BaF2 scintillator with deep ultraviolet-sensitive silicon photomultipliers (SiPMs) from Hamamatsu for precise timing in PET and HEP. Using BaF2 read out by these photodetectors with a photon detection efficiency (PDE) of only about 15% in the desired 200nm emission region, a time resolution of 94±5ps FWHM is achieved when coupling with air. This figure improves to 78$±4ps FWHM when coupling the BaF2 crystal with UV transparent optical grease, Viscasil, to the photodetector. This CTR performance obtained with BaF2 is already better than that measured with LYSO:Ce, a commonly used state-of-the-art inorganic scintillator in PET, when coupled to another Hamamatsu photodetector (S13360) and coupled with Meltmount. Assuming that one could increase the PDE in the ultraviolet to values of 60% obtained today at 420nm, the emission wavelength of LYSO, one could ultimately achieve CTRs below 40ps FWHM. Further improvements in CTR beyond these values could be envisaged if also the single photon time resolution (SPTR) of the ultraviolet sensitive SiPM could be enhanced. Studying the emission of BaF2 more in detail, a very fast decay component of less than 100ps has recently been observed, being of high interest in the domain of ultrafast timing. Hence, in depth investigation of this decay component would give an additional handle to improve time resolution. In view of the prospects in advancing technologies for ultraviolet sensitive SiPMs, with high PDE and SPTR, and further advancements in producing high quality BaF2, one could imagine the development of sub-30ps FWHM TOF-PET systems.
DOI: 10.1088/1361-6560/abf604
2021
Cited 16 times
DOI estimation through signal arrival time distribution: a theoretical description including proof of concept measurements
The challenge to reach 10 ps coincidence time resolution (CTR) in time-of-flight positron emission tomography (TOF-PET) is triggering major efforts worldwide, but timing improvements of scintillation detectors will remain elusive without depth-of-interaction (DOI) correction in long crystals. Nonetheless, this momentum opportunely brings up the prospect of a fully time-based DOI estimation since fast timing signals intrinsically carry DOI information, even with a traditional single-ended readout. Consequently, extracting features of the detected signal time distribution could uncover the spatial origin of the interaction and in return, provide enhancement on the timing precision of detectors. We demonstrate the validity of a time-based DOI estimation concept in two steps. First, experimental measurements were carried out with current LSO:Ce:Ca crystals coupled to FBK NUV-HD SiPMs read out by fast high-frequency electronics to provide new evidence of a distinct DOI effect on CTR not observable before with slower electronics. Using this detector, a DOI discrimination using a double-threshold scheme on the analog timing signal together with the signal intensity information was also developed without any complex readout or detector modification. As a second step, we explored by simulation the anticipated performance requirements of future detectors to efficiently estimate the DOI and we proposed four estimators that exploit either more generic or more precise features of the DOI-dependent timestamp distribution. A simple estimator using the time difference between two timestamps provided enhanced CTR. Additional improvements were achieved with estimators using multiple timestamps (e.g. kernel density estimation and neural network) converging to the Cramér-Rao lower bound developed in this work for a time-based DOI estimation. This two-step study provides insights on current and future possibilities in exploiting the timing signal features for DOI estimation aiming at ultra-fast CTR while maintaining detection efficiency for TOF PET.
DOI: 10.1063/5.0137890
2023
Cited 3 times
Two-dimensional perovskite functionalized fiber-type heterostructured scintillators
A fiber-type heterostructured scintillator based on bismuth germanate (Bi4Ge3O12) functionalized with the 2D-perovskite butylammonium lead bromide ((BA)2PbBr4) has been fabricated, and its scintillation performance analyzed toward its use for fast timing applications such as time-of-flight Positron Emission Tomography. The pixel shows energy sharing between the matrix and filler component, confirming that the two components are in synergy.
DOI: 10.1109/trpms.2023.3259464
2023
Cited 3 times
Fast Timing in Medical Imaging
We report in this article on the Fast Timing in Medical Imaging workshop, (Valencia, 2 June 2022). The workshop gathered 104 attendees from all over the world, with representatives from the academic and industrial sectors. During three very dense days, nuclear medicine physicians, radiologists, oncologists, immunologists, and biologists have debated with physicists, engineers, technologists of different disciplines, as well as with medical imaging industry representatives to devise about the importance of improving the timing performance of a new generation of medical imaging instrumentation, with a special focus on positron emission tomography scanners toward the ultimate goal of 10-ps coincidence time resolution (CTR), allowing a millimeter 3-D spatial resolution on an event-to-event basis by time-of-flight (TOF) techniques. This article summarizes the most up-to-date developments on the roadmap toward the 10-ps time of flight challenge based on the contributions to this workshop.
DOI: 10.1109/tns.2023.3267636
2023
Cited 3 times
Solution-Processable A<sub>2</sub>XY<sub>4</sub> (A = PEA, BA; X = Pb, Sn, Cu, Mn; Y = Cl, Br, I) Crystals for High Light Yield and Ultrafast Scintillators
Two-dimensional (2-D) Ruddlesden-Popper (RP) hybrid organic-inorganic perovskite (HOIP) crystals, A <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> XY <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> [A = Phenethylammonium (PEA), Butylammonium (BA); X = Pb, Sn, Cu, Mn; Y = Cl, Br, I] have been a subject of interest for solution-processable scintillators for the past two decades, due to the possibility to grow high-quality and large crystals with low-cost techniques. We start the review from PEA <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> PbBr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> and BA <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> PbBr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> crystals, which have light yields >10 photons/keV and scintillation decay times < 15 ns. Then, we extend our review to iodide compounds from the perspective that the smaller bandgaps and the heavier anions can allow higher light yields and shorter absorption lengths, respectively. In our previous experiments, we observed that the iodide crystals are bright while they have 1 ns optical decay times. Another approach is the investigations of the ion-doped PEA <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> PbBr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> and BA <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> PbBr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> , in which Li-doped PEA <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> PbBr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> has 23 photons/keV light yields. An additional feature is the thermal neutron detection and the discrimination with gamma-ray. Finally, we investigate lead-free perovskite variants (Sn, Cu, and Mn) as they are more friendly to environments, and the emission is shifted from blue to green or red for better sensitivity with current X-ray imaging detectors. Unfortunately, the light yields are much lower than the Pb counterparts, while the decay times are considerably slower due to different exciton mechanisms. This comprehensive investigation helps us to direct our review to the identification of the ultimate 2-D RP HOIP scintillators with high light yield, ultrafast response, and environmental friendliness.
DOI: 10.1016/s1350-4487(97)00230-8
1998
Cited 48 times
Systematic study of the short-term instability of PbWO4 scintillator parameters under irradiation
The effect of irradiation on lead tungstate PbWO4 (PWO) scintillator properties has been studied at different irradiation facilities. Lead tungstate crystals, grown with the oxide content in the melt tuned to the stoichiometry of pure sheelite or sheelite-like crystal types and doped with heterovalent, trivalent and pentavalent impurities, have been studied in order to optimize their resistance to irradiation. A combination of a selective cleaning of raw materials, a tuning of the melt from crystallization to crystallization and a destruction or compensation of the point-structure defects has to be used to minimize the short-term instability of PWO parameters under irradiation.
DOI: 10.1016/s0168-9002(98)01447-8
1999
Cited 45 times
Suppression of the radiation damage in lead tungstate scintillation crystal
Methods to suppress damage centres in lead tungstate (PWO) crystals under irradiation are discussed. It is shown that in large size scintillation elements (23 cm in length) the minimization of both electron and hole centers created under irradiation by recharge of structural defects is achieved by proper stoichiometry tuning and additional simultaneous doping of crystals by Y and Nb. The different aspects of the suppression of the recharge process in PWO scintillation crystals are also discussed.
DOI: 10.1016/j.nima.2006.10.034
2007
Cited 32 times
Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics
The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.
DOI: 10.1140/epjc/s10052-009-0959-5
2009
Cited 30 times
The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c
The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±1.6% and the constant term is 7.4±0.8%. The corrected mean response remains constant within 1.3% rms.
DOI: 10.1109/tns.2008.2004036
2008
Cited 30 times
A Novel Time-Based Readout Scheme for a Combined PET-CT Detector Using APDs
This paper summarizes CERN R&D work done in the framework of the European Commission's FP6 BioCare Project. The objective was to develop a novel "time-based" signal processing technique to read out LSO-APD photodetectors for medical imaging. An important aspect was to employ the technique in a combined scenario for both computer tomography (CT) and positron emission tomography (PET) with effectively no tradeoffs in efficiency and resolution compared to traditional single mode machines. This made the use of low noise and yet very high-speed monolithic front-end electronics essential so as to assure the required timing characteristics together with a high signal-to-noise ratio. Using APDs for photon detection, two chips, traditionally employed for particle physics, could be identified to meet the above criteria. Although both were not optimized for their intended new medical application, excellent performance in conjunction with LSO-APD sensors could be derived. Whereas a measured energy resolution of 16% (FWHM) at the 511 keV photo peak competes favorably with that of 'classical' PMTs, the coincidence time resolution of 1.6 ns FWHM with dual APD readout is typically lower. This is attributed to the stochastic photon production mechanism in LSO and the photon conversion characteristic of the photo diode, as well as to the fluctuations in photon conversion, albeit the APD's superior quantum efficiency. Also in terms of CT counting speed, the chosen readout principle is limited by the intrinsic light decay in LSO (40 ns) for each impinging X-ray.
DOI: 10.1109/nssmic.2011.6154308
2011
Cited 27 times
Effects of photonic crystals on the light output of heavy inorganic scintillators
Photonic crystals (PhCs) are optical materials which can affect the propagation of light in multiple ways. In recent years PhCs contributed to major technological developments in the field of semiconductor lasers, light emitting diodes or photovoltaic applications. In our case we are investigating the capabilities of photonic crystal slabs with the aim to improve the performance of heavy inorganic scintillators. To study the combination of scintillators and PhCs we use a Monte-Carlo program to simulate the light propagation inside a scintillator and a rigorous coupled wave analysis (RCWA) framework to analyze the optical PhC properties. The simulations show light output improvements of a wide range of scintillating materials due to light scattering effects of the PhC slabs. First samples have been produced on top of 1:2mm×2:6mm×5mm LSO (cerium-doped Lutetium Oxyorthosilicate, Lu <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> SiO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</inf> :Ce <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3+</sup> ) scintillators using electron beam lithography and reactive ion etching. Our samples are showing a 30–60% light output improvement when compared to unstructured reference crystals which is in close accordance with our simulation results.
DOI: 10.1109/tns.2012.2202918
2012
Cited 26 times
A Systematic Study to Optimize SiPM Photo-Detectors for Highest Time Resolution in PET
We report on a systematic study of time resolution made with three different commercial silicon photomultipliers (SiPMs) (Hamamatsu MPPC S10931-025P, S10931-050P, and S10931-100P) and two LSO scintillating crystals. This study aimed to determine the optimum detector conditions for highest time resolution in a prospective time-of-flight positron emission tomography (TOF-PET) system. Measurements were based on the time over threshold method in a coincidence setup using the ultrafast amplifier-discriminator NINO and a fast oscilloscope. Our tests with the three SiPMs of the same area but of different SPAD sizes and fill factors led to best results with the Hamamatsu type of 50×50×μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> single-pixel size. For this type of SiPM and under realistic geometrical PET scanner conditions, i.e., with 2×2×10×mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> LSO crystals, a coincidence time resolution of 220 ±4 ps FWHM could be achieved. The results are interpreted in terms of SiPM photon detection efficiency (PDE), dark noise, and photon yield.
DOI: 10.1109/tns.2012.2197416
2012
Cited 24 times
Experimental Study of Lead Tungstate Scintillator Proton-Induced Damage and Recovery
Lead tungstate (PbWO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> , or PWO) scintillating crystals are used by two of the four experiments at the Large Hadron Collider (LHC): 75848 in CMS and 17920 in ALICE. For the CMS electromagnetic calorimeter, one of the most important crystal properties is its radiation hardness. With the increase of luminosity, the radiation level will increase drastically, particularly in the high pseudorapidity regions of the calorimeter. Beside the effects of color-centre formation caused by γ-radiation, additional measurable effect originated by hadron irradiation could appear, which will further deteriorate the optical transmission of the crystals and therefore their efficiency. In this paper, we will present results of the proton-induced damage in PWO and a study of optical transmission recovery at different temperatures and under different light-induced “bleaching” conditions for proton-irradiated crystals.
DOI: 10.1088/1748-0221/8/10/p10017
2013
Cited 22 times
Test beam results with LuAG fibers for next-generation calorimeters
For the next generation of calorimeters, designed to improve the energy resolution of hadrons and jet measurements, there is a need for highly granular detectors that require peculiar geometries. Inorganic scintillators can provide good stopping power to allow compact calorimeter designs together with an excellent energy resolution. The micropulling-down technique allows to grow crystal fibers with high aspect ratio providing good granularity. Designs based on dual-readout could also be considered since the host matrices of extrinsic scintillators behave as a Cherenkov radiator in the absence of the scintillating dopant. We report here about results obtained with crystal fibers of 22 cm length and 2 mm diameter of lutetium aluminium garnet (LuAG, Lu3Al5O12). The response of such fibers in a high energy physics environment has been investigated through a test beam campaign at the CERN PS facility using electrons in the 50–150 GeV energy range. The results, proving the potential of LuAG fibers for calorimetry applications, have been used to validate a Geant4 simulation which allowed to study different configuration of a fiber-based detector. Possible implementations of the crystal fibers technology into a real calorimeter are also discussed.
DOI: 10.1016/j.nima.2016.09.037
2017
Cited 21 times
Optical transmission damage of undoped and Ce doped Y3Al5O12 scintillation crystals under 24 GeV protons high fluence
This report presents results on the optical transmission damage of undoped and Ce doped Y3Al5O12 scintillation crystals under high fluence of 24 GeV protons. We observed that, similarly to other middle heavy scintillators, it possesses the unique radiation hardness at fluence values as high as 5×1014 p/cm2 and it is thus promising for the application in the detectors at High Luminosity LHC. The crystalline structure of the garnet scintillator allows to control and further optimize its scintillation parameters, such as scintillation decay time and emission wavelength, and shows a limited set of the radioisotopes after the irradiation with protons.
DOI: 10.1002/pssr.201600288
2016
Cited 21 times
Timing performance of ZnO:Ga nanopowder composite scintillators
The implementation of nanocrystal‐based composite scintillators as a new generation of ultrafast particle detectors is explored using ZnO:Ga nanopowder. Samples are characterized with a spectral‐time resolved photon counting system and pulsed X‐rays, followed by coincidence time resolution (CTR) measurements under 511 keV gamma excitation. Results are comparable to CTR values obtained using bulk inorganic scintillators. Bringing the ZnO:Ga nanocrystal's timing performance to radiation detectors could pave the research path towards sub‐20 ps time resolution as shown in this contribution. However, an efficiency boost when placing nanopowders in a transparent host constitutes the main challenge in order to benefit from sub‐nanosecond recombination times. (© 2016 WILEY‐VCH Verlag GmbH &amp;Co. KGaA, Weinheim)