ϟ

Dennis W. Dickson

Here are all the papers by Dennis W. Dickson that you can download and read on OA.mg.
Dennis W. Dickson’s last known institution is . Download Dennis W. Dickson PDFs here.

Claim this Profile →
DOI: 10.1016/j.jalz.2011.03.008
2011
Cited 7,452 times
The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of developing criteria for the symptomatic predementia phase of Alzheimer's disease (AD), referred to in this article as mild cognitive impairment due to AD. The workgroup developed the following two sets of criteria: (1) core clinical criteria that could be used by healthcare providers without access to advanced imaging techniques or cerebrospinal fluid analysis, and (2) research criteria that could be used in clinical research settings, including clinical trials. The second set of criteria incorporate the use of biomarkers based on imaging and cerebrospinal fluid measures. The final set of criteria for mild cognitive impairment due to AD has four levels of certainty, depending on the presence and nature of the biomarker findings. Considerable work is needed to validate the criteria that use biomarkers and to standardize biomarker analysis for use in community settings.
DOI: 10.1212/01.wnl.0000187889.17253.b1
2005
Cited 4,567 times
Diagnosis and management of dementia with Lewy bodies
The dementia with Lewy bodies (DLB) Consortium has revised criteria for the clinical and pathologic diagnosis of DLB incorporating new information about the core clinical features and suggesting improved methods to assess them. REM sleep behavior disorder, severe neuroleptic sensitivity, and reduced striatal dopamine transporter activity on functional neuroimaging are given greater diagnostic weighting as features suggestive of a DLB diagnosis. The 1-year rule distinguishing between DLB and Parkinson disease with dementia may be difficult to apply in clinical settings and in such cases the term most appropriate to each individual patient should be used. Generic terms such as Lewy body (LB) disease are often helpful. The authors propose a new scheme for the pathologic assessment of LBs and Lewy neurites (LN) using alpha-synuclein immunohistochemistry and semiquantitative grading of lesion density, with the pattern of regional involvement being more important than total LB count. The new criteria take into account both Lewy-related and Alzheimer disease (AD)-type pathology to allocate a probability that these are associated with the clinical DLB syndrome. Finally, the authors suggest patient management guidelines including the need for accurate diagnosis, a target symptom approach, and use of appropriate outcome measures. There is limited evidence about specific interventions but available data suggest only a partial response of motor symptoms to levodopa: severe sensitivity to typical and atypical antipsychotics in approximately 50%, and improvements in attention, visual hallucinations, and sleep disorders with cholinesterase inhibitors.
DOI: 10.1016/j.neuron.2011.09.011
2011
Cited 4,217 times
Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS
Several families have been reported with autosomal-dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here, we report an expansion of a noncoding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43-based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (23.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS.
DOI: 10.1212/wnl.47.5.1113
1996
Cited 3,620 times
Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB)
Recent neuropathologic autopsy studies found that 15 to 25% of elderly demented patients have Lewy bodies (LB) in their brainstem and cortex, and in hospital series this may constitute the most common pathologic subgroup after pure Alzheimer's disease (AD). The Consortium on Dementia with Lewy bodies met to establish consensus guidelines for the clinical diagnosis of dementia with Lewy bodies (DLB) and to establish a common framework for the assessment and characterization of pathologic lesions at autopsy. The importance of accurate antemortem diagnosis of DLB includes a characteristic and often rapidly progressive clinical syndrome, a need for particular caution with neuroleptic medication, and the possibility that DLB patients may be particularly responsive to cholinesterase inhibitors. We identified progressive disabling mental impairment progressing to dementia as the central feature of DLB. Attentional impairments and disproportionate problem solving and visuospatial difficulties are often early and prominent. Fluctuation in cognitive function, persistent well-formed visual hallucinations, and spontaneous motor features of parkinsonism are core features with diagnostic significance in discriminating DLB from AD and other dementias. Appropriate clinical methods for eliciting these key symptoms are described. Brainstem or cortical LB are the only features considered essential for a pathologic diagnosis of DLB, although Lewy-related neurites, Alzheimer pathology, and spongiform change may also be seen. We identified optimal staining methods for each of these and devised a protocol for the evaluation of cortical LB frequency based on a brain sampling procedure consistent with CERAD. This allows cases to be classified into brainstem predominant, limbic (transitional), and neocortical subtypes, using a simple scoring system based on the relative distribution of semiquantitative LB counts. Alzheimer pathology is also frequently present in DLB, usually as diffuse or neuritic plaques, neocortical neurofibrillary tangles being much less common. The precise nosological relationship between DLB and AD remains uncertain, as does that between DLB and patients with Parkinson's disease who subsequently develop neuropsychiatric features. Finally, we recommend procedures for the selective sampling and storage of frozen tissue for a variety of neurochemical assays, which together with developments in molecular genetics, should assist future refinements of diagnosis and classification.
DOI: 10.1038/31508
1998
Cited 3,225 times
Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17
DOI: 10.1212/wnl.0000000000004058
2017
Cited 2,815 times
Diagnosis and management of dementia with Lewy bodies
The Dementia with Lewy Bodies (DLB) Consortium has refined its recommendations about the clinical and pathologic diagnosis of DLB, updating the previous report, which has been in widespread use for the last decade. The revised DLB consensus criteria now distinguish clearly between clinical features and diagnostic biomarkers, and give guidance about optimal methods to establish and interpret these. Substantial new information has been incorporated about previously reported aspects of DLB, with increased diagnostic weighting given to REM sleep behavior disorder and 123iodine-metaiodobenzylguanidine (MIBG) myocardial scintigraphy. The diagnostic role of other neuroimaging, electrophysiologic, and laboratory investigations is also described. Minor modifications to pathologic methods and criteria are recommended to take account of Alzheimer disease neuropathologic change, to add previously omitted Lewy-related pathology categories, and to include assessments for substantia nigra neuronal loss. Recommendations about clinical management are largely based upon expert opinion since randomized controlled trials in DLB are few. Substantial progress has been made since the previous report in the detection and recognition of DLB as a common and important clinical disorder. During that period it has been incorporated into DSM-5, as major neurocognitive disorder with Lewy bodies. There remains a pressing need to understand the underlying neurobiology and pathophysiology of DLB, to develop and deliver clinical trials with both symptomatic and disease-modifying agents, and to help patients and carers worldwide to inform themselves about the disease, its prognosis, best available treatments, ongoing research, and how to get adequate support.
DOI: 10.1016/j.neuron.2004.11.005
2004
Cited 2,681 times
Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology
<h2>Abstract</h2> We have previously linked families with autosomal-dominant, late-onset parkinsonism to chromosome 12p11.2-q13.1 (PARK8). By high-resolution recombination mapping and candidate gene sequencing in 46 families, we have found six disease-segregating mutations (five missense and one putative splice site mutation) in a gene encoding a large, multifunctional protein, <i>LRRK2</i> (leucine-rich repeat kinase 2). It belongs to the ROCO protein family and includes a protein kinase domain of the MAPKKK class and several other major functional domains. Within affected carriers of families A and D, six post mortem diagnoses reveal brainstem dopaminergic degeneration accompanied by strikingly diverse pathologies. These include abnormalities consistent with Lewy body Parkinson's disease, diffuse Lewy body disease, nigral degeneration without distinctive histopathology, and progressive supranuclear palsy-like pathology. Clinical diagnoses of Parkinsonism with dementia or amyotrophy or both, with their associated pathologies, are also noted. Hence, <i>LRRK2</i> may be central to the pathogenesis of several major neurodegenerative disorders associated with parkinsonism.
DOI: 10.1002/mds.21507
2007
Cited 2,480 times
Clinical diagnostic criteria for dementia associated with Parkinson's disease
Dementia has been increasingly more recognized to be a common feature in patients with Parkinson's disease (PD), especially in old age. Specific criteria for the clinical diagnosis of dementia associated with PD (PD-D), however, have been lacking. A Task Force, organized by the Movement Disorder Study, was charged with the development of clinical diagnostic criteria for PD-D. The Task Force members were assigned to sub-committees and performed a systematic review of the literature, based on pre-defined selection criteria, in order to identify the epidemiological, clinical, auxillary, and pathological features of PD-D. Clinical diagnostic criteria were then developed based on these findings and group consensus. The incidence of dementia in PD is increased up to six times, point-prevelance is close to 30%, older age and akinetic-rigid form are associated with higher risk. PD-D is characterized by impairment in attention, memory, executive and visuo-spatial functions, behavioral symptoms such as affective changes, hallucinations, and apathy are frequent. There are no specific ancillary investigations for the diagnosis; the main pathological correlate is Lewy body-type degeneration in cerebral cortex and limbic structures. Based on the characteristic features associated with this condition, clinical diagnostic criteria for probable and possible PD-D are proposed.
DOI: 10.1007/s00401-011-0910-3
2011
Cited 2,051 times
National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach
We present a practical guide for the implementation of recently revised National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease (AD). Major revisions from previous consensus criteria are: (1) recognition that AD neuropathologic changes may occur in the apparent absence of cognitive impairment, (2) an “ABC” score for AD neuropathologic change that incorporates histopathologic assessments of amyloid β deposits (A), staging of neurofibrillary tangles (B), and scoring of neuritic plaques (C), and (3) more detailed approaches for assessing commonly co-morbid conditions such as Lewy body disease, vascular brain injury, hippocampal sclerosis, and TAR DNA binding protein (TDP)-43 immunoreactive inclusions. Recommendations also are made for the minimum sampling of brain, preferred staining methods with acceptable alternatives, reporting of results, and clinico-pathologic correlations.
DOI: 10.1016/j.jalz.2011.10.007
2012
Cited 2,038 times
National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease
A consensus panel from the United States and Europe was convened recently to update and revise the 1997 consensus guidelines for the neuropathologic evaluation of Alzheimer's disease (AD) and other diseases of brain that are common in the elderly. The new guidelines recognize the pre-clinical stage of AD, enhance the assessment of AD to include amyloid accumulation as well as neurofibrillary change and neuritic plaques, establish protocols for the neuropathologic assessment of Lewy body disease, vascular brain injury, hippocampal sclerosis, and TDP-43 inclusions, and recommend standard approaches for the workup of cases and their clinico-pathologic correlation.
DOI: 10.1038/nature05016
2006
Cited 1,819 times
Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17
DOI: 10.1038/ng.803
2011
Cited 1,718 times
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease
We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10(-5). We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10(-17); including ADGC data, meta P = 5.0 × 10(-21)) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10(-14); including ADGC data, meta P = 1.2 × 10(-16)) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10(-4); including ADGC data, meta P = 8.6 × 10(-9)), CD33 (GERAD+, P = 2.2 × 10(-4); including ADGC data, meta P = 1.6 × 10(-9)) and EPHA1 (GERAD+, P = 3.4 × 10(-4); including ADGC data, meta P = 6.0 × 10(-10)).
DOI: 10.1038/ng.801
2011
Cited 1,694 times
Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease
The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association study of late-onset Alzheimer disease using a three-stage design consisting of a discovery stage (stage 1) and two replication stages (stages 2 and 3). Both joint analysis and meta-analysis approaches were used. We obtained genome-wide significant results at MS4A4A (rs4938933; stages 1 and 2, meta-analysis P (P(M)) = 1.7 × 10(-9), joint analysis P (P(J)) = 1.7 × 10(-9); stages 1, 2 and 3, P(M) = 8.2 × 10(-12)), CD2AP (rs9349407; stages 1, 2 and 3, P(M) = 8.6 × 10(-9)), EPHA1 (rs11767557; stages 1, 2 and 3, P(M) = 6.0 × 10(-10)) and CD33 (rs3865444; stages 1, 2 and 3, P(M) = 1.6 × 10(-9)). We also replicated previous associations at CR1 (rs6701713; P(M) = 4.6 × 10(-10), P(J) = 5.2 × 10(-11)), CLU (rs1532278; P(M) = 8.3 × 10(-8), P(J) = 1.9 × 10(-8)), BIN1 (rs7561528; P(M) = 4.0 × 10(-14), P(J) = 5.2 × 10(-14)) and PICALM (rs561655; P(M) = 7.0 × 10(-11), P(J) = 1.0 × 10(-10)), but not at EXOC3L2, to late-onset Alzheimer's disease susceptibility.
DOI: 10.1186/s13024-019-0333-5
2019
Cited 1,631 times
The neuropathological diagnosis of Alzheimer’s disease
Alzheimer’s disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer’s disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer’s disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer’s disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer’s disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer’s disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment.
DOI: 10.1002/mds.26987
2017
Cited 1,446 times
Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria
PSP is a neuropathologically defined disease entity. Clinical diagnostic criteria, published in 1996 by the National Institute of Neurological Disorders and Stroke/Society for PSP, have excellent specificity, but their sensitivity is limited for variant PSP syndromes with presentations other than Richardson's syndrome.We aimed to provide an evidence- and consensus-based revision of the clinical diagnostic criteria for PSP.We searched the PubMed, Cochrane, Medline, and PSYCInfo databases for articles published in English since 1996, using postmortem diagnosis or highly specific clinical criteria as the diagnostic standard. Second, we generated retrospective standardized clinical data from patients with autopsy-confirmed PSP and control diseases. On this basis, diagnostic criteria were drafted, optimized in two modified Delphi evaluations, submitted to structured discussions with consensus procedures during a 2-day meeting, and refined in three further Delphi rounds.Defined clinical, imaging, laboratory, and genetic findings serve as mandatory basic features, mandatory exclusion criteria, or context-dependent exclusion criteria. We identified four functional domains (ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction) as clinical predictors of PSP. Within each of these domains, we propose three clinical features that contribute different levels of diagnostic certainty. Specific combinations of these features define the diagnostic criteria, stratified by three degrees of diagnostic certainty (probable PSP, possible PSP, and suggestive of PSP). Clinical clues and imaging findings represent supportive features.Here, we present new criteria aimed to optimize early, sensitive, and specific clinical diagnosis of PSP on the basis of currently available evidence. © 2017 International Parkinson and Movement Disorder Society.
DOI: 10.1126/science.1058189
2001
Cited 1,434 times
Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP
JNPL3 transgenic mice expressing a mutant tau protein, which develop neurofibrillary tangles and progressive motor disturbance, were crossed with Tg2576 transgenic mice expressing mutant beta-amyloid precursor protein (APP), thus modulating the APP-Abeta (beta-amyloid peptide) environment. The resulting double mutant (tau/APP) progeny and the Tg2576 parental strain developed Abeta deposits at the same age; however, relative to JNPL3 mice, the double mutants exhibited neurofibrillary tangle pathology that was substantially enhanced in the limbic system and olfactory cortex. These results indicate that either APP or Abeta influences the formation of neurofibrillary tangles. The interaction between Abeta and tau pathologies in these mice supports the hypothesis that a similar interaction occurs in Alzheimer's disease.
DOI: 10.1001/archneur.58.11.1803
2001
Cited 1,400 times
Clinical and Pathological Diagnosis of Frontotemporal Dementia
An international group of clinical and basic scientists participated in the Frontotemporal Dementia and Pick's Disease Criteria Conference at the National Institutes of Health in Bethesda, Md, on July 7, 2000, to reassess clinical and neuropathological criteria for the diagnosis of frontotemporal dementia (FTD). Previous criteria for FTD have primarily been designed for research purposes. The goal of this meeting was to propose guidelines that would enable clinicians (particularly neurologists, psychiatrists, and neuropsychologists) to recognize patients with FTD and, if appropriate, to expedite their referral to a diagnostic center. In addition, recommendations for the neuropathological criteria of FTD were reviewed, relative to classical neuropathology and modern molecular biology.
DOI: 10.1212/wnl.0b013e31827f0fd1
2013
Cited 1,365 times
Criteria for the diagnosis of corticobasal degeneration
Current criteria for the clinical diagnosis of pathologically confirmed corticobasal degeneration (CBD) no longer reflect the expanding understanding of this disease and its clinicopathologic correlations. An international consortium of behavioral neurology, neuropsychology, and movement disorders specialists developed new criteria based on consensus and a systematic literature review. Clinical diagnoses (early or late) were identified for 267 nonoverlapping pathologically confirmed CBD cases from published reports and brain banks. Combined with consensus, 4 CBD phenotypes emerged: corticobasal syndrome (CBS), frontal behavioral-spatial syndrome (FBS), nonfluent/agrammatic variant of primary progressive aphasia (naPPA), and progressive supranuclear palsy syndrome (PSPS). Clinical features of CBD cases were extracted from descriptions of 209 brain bank and published patients, providing a comprehensive description of CBD and correcting common misconceptions. Clinical CBD phenotypes and features were combined to create 2 sets of criteria: more specific clinical research criteria for probable CBD and broader criteria for possible CBD that are more inclusive but have a higher chance to detect other tau-based pathologies. Probable CBD criteria require insidious onset and gradual progression for at least 1 year, age at onset ≥ 50 years, no similar family history or known tau mutations, and a clinical phenotype of probable CBS or either FBS or naPPA with at least 1 CBS feature. The possible CBD category uses similar criteria but has no restrictions on age or family history, allows tau mutations, permits less rigorous phenotype fulfillment, and includes a PSPS phenotype. Future validation and refinement of the proposed criteria are needed.
DOI: 10.1038/78078
2000
Cited 1,251 times
Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein
DOI: 10.1001/jama.2010.574
2010
Cited 1,118 times
Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease
Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD).To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35,000 persons (8371 AD cases).In stage 1, we identified strong genetic associations (P < 10(-3)) in a sample of 3006 AD cases and 14,642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P < 10(-3). In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P < 10(-5). In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P < 1.7x10(-8). These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009.Presence of Alzheimer disease.Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; P = 1.59x10(-11)) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR, 1.18; 95% CI, 1.07-1.29; P = 6.45x10(-9)). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P < .05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study).Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research.
DOI: 10.1007/s00401-014-1349-0
2014
Cited 1,081 times
Primary age-related tauopathy (PART): a common pathology associated with human aging
We recommend a new term, “primary age-related tauopathy” (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer’s disease (AD), in the absence of amyloid (Aβ) plaques. For these “NFT+/Aβ−” brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as “tangle-only dementia” and “tangle-predominant senile dementia”, are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of Aβ accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.
DOI: 10.1038/ng1943
2007
Cited 1,044 times
The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease
The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid beta peptide (Abeta) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Abeta-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.
DOI: 10.1007/s00401-007-0237-2
2007
Cited 1,002 times
Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration
The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD); revised criteria are proposed. Recent advances in molecular genetics, biochemistry, and neuropathology of FTLD prompted the Midwest Consortium for Frontotemporal Lobar Degeneration and experts at other centers to review and revise the existing neuropathologic diagnostic criteria for FTLD. The proposed criteria for FTLD are based on existing criteria, which include the tauopathies [FTLD with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, sporadic multiple system tauopathy with dementia, argyrophilic grain disease, neurofibrillary tangle dementia, and FTD with microtubule-associated tau (MAPT) gene mutation, also called FTD with parkinsonism linked to chromosome 17 (FTDP-17)]. The proposed criteria take into account new disease entities and include the novel molecular pathology, TDP-43 proteinopathy, now recognized to be the most frequent histological finding in FTLD. TDP-43 is a major component of the pathologic inclusions of most sporadic and familial cases of FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U) with or without motor neuron disease (MND). Molecular genetic studies of familial cases of FTLD-U have shown that mutations in the progranulin (PGRN) gene are a major genetic cause of FTLD-U. Mutations in valosin-containing protein (VCP) gene are present in rare familial forms of FTD, and some families with FTD and/or MND have been linked to chromosome 9p, and both are types of FTLD-U. Thus, familial TDP-43 proteinopathy is associated with defects in multiple genes, and molecular genetics is required in these cases to correctly identify the causative gene defect. In addition to genetic heterogeneity amongst the TDP-43 proteinopathies, there is also neuropathologic heterogeneity and there is a close relationship between genotype and FTLD-U subtype. In addition to these recent significant advances in the neuropathology of FTLD-U, novel FTLD entities have been further characterized, including neuronal intermediate filament inclusion disease. The proposed criteria incorporate up-to-date neuropathology of FTLD in the light of recent immunohistochemical, biochemical, and genetic advances. These criteria will be of value to the practicing neuropathologist and provide a foundation for clinical, clinico-pathologic, mechanistic studies and in vivo models of pathogenesis of FTLD.
DOI: 10.1016/j.neuron.2013.02.004
2013
Cited 974 times
Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. Hexanucleotide (GGGGCC) repeat expansions in a noncoding region of C9ORF72 are the major genetic cause of FTD and ALS (c9FTD/ALS). The RNA structure of GGGGCC repeats renders these transcripts susceptible to an unconventional mechanism of translation-repeat-associated non-ATG (RAN) translation. Antibodies generated against putative GGGGCC repeat RAN-translated peptides (anti-C9RANT) detected high molecular weight, insoluble material in brain homogenates, and neuronal inclusions throughout the CNS of c9FTD/ALS cases. C9RANT immunoreactivity was not found in other neurodegenerative diseases, including CAG repeat disorders, or in peripheral tissues of c9FTD/ALS. The specificity of C9RANT for c9FTD/ALS is a potential biomarker for this most common cause of FTD and ALS. These findings have significant implications for treatment strategies directed at RAN-translated peptides and their aggregation and the RNA structures necessary for their production.
DOI: 10.1002/mds.21844
2007
Cited 916 times
Diagnostic procedures for Parkinson's disease dementia: Recommendations from the movement disorder society task force
A preceding article described the clinical features of Parkinson's disease dementia (PD-D) and proposed clinical diagnostic criteria for "probable" and "possible" PD-D. The main focus of this article is to operationalize the diagnosis of PD-D and to propose practical guidelines based on a two level process depending upon the clinical scenario and the expertise of the evaluator involved in the assessment. Level I is aimed primarily at the clinician with no particular expertise in neuropsychological methods, but who requires a simple, pragmatic set of tests that are not excessively time-consuming. Level I can be used alone or in concert with Level II, which is more suitable when there is the need to specify the pattern and the severity on the dementia of PD-D for clinical monitoring, research studies or pharmacological trials. Level II tests can also be proposed when the diagnosis of PD-D remains uncertain or equivocal at the end of a Level I evaluation. Given the lack of evidence-based standards for some tests when applied in this clinical context, we have tried to make practical and unambiguous recommendations, based upon the available literature and the collective experience of the Task Force. We accept, however, that further validation of certain tests and modifications in the recommended cut off values will be required through future studies.
DOI: 10.1101/cshperspect.a028035
2017
Cited 914 times
Pathology of Neurodegenerative Diseases
Neurodegenerative disorders are characterized by progressive loss of selectively vulnerable populations of neurons, which contrasts with select static neuronal loss because of metabolic or toxic disorders. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormality. The most common neurodegenerative disorders are amyloidoses, tauopathies, α-synucleinopathies, and TDP-43 proteinopathies. The protein abnormalities in these disorders have abnormal conformational properties. Growing experimental evidence suggests that abnormal protein conformers may spread from cell to cell along anatomically connected pathways, which may in part explain the specific anatomical patterns observed at autopsy. In this review, we detail the human pathology of select neurodegenerative disorders, focusing on their main protein aggregates.
DOI: 10.1093/brain/awz099
2019
Cited 912 times
Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
DOI: 10.1007/s00401-009-0612-2
2009
Cited 869 times
Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update
Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration : an update
DOI: 10.1093/brain/awm056
2007
Cited 857 times
Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease
REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of normal skeletal muscle atonia during REM sleep with prominent motor activity accompanying dreaming. The terminology relating to RBD, and mechanisms underlying REM sleep without atonia and RBD based on data in cat and rat are presented. Neuroimaging data from the few published human cases with RBD associated with structural lesions in the brainstem are presented, in which the dorsal midbrain and pons are implicated. Pharmacological manipulations which alter RBD frequency and severity are reviewed, and the data from human neuropathological studies are presented. An anatomic framework and new schema for the pathophysiology of RBD are proposed based on recent data in rat regarding the putative flip-flop switch for REM sleep control. The structure in man analogous to the subcoeruleus region in cat and sublaterodorsal nucleus in rat is proposed as the nucleus (and its associated efferent and afferent pathways) crucial to RBD pathophysiology. The association of RBD with neurological disease (‘secondary RBD’) is presented, with emphasis on RBD associated with neurodegenerative disease, particularly the synucleinopathies. The hypothesized pathophysiology of RBD is presented in relation to the Braak staging system for Parkinson's disease, in which the topography and temporal sequence of synuclein pathology in the brain could explain the evolution of parkinsonism and/or dementia well after the onset of RBD. These data suggest that many patients with ‘idiopathic’ RBD are actually exhibiting an early clinical manifestation of an evolving neurodegenerative disorder. Such patients may be appropriate for future drug therapies that affect synuclein pathophysiology, in which the development of parkinsonism and/or dementia could be delayed or prevented. We suggest that additional clinicopathological studies be performed in patients with dementia or parkinsonism, with and without RBD, as well as in patients with idiopathic RBD, to further elucidate the pathophysiology and also characterize the clinical and pathophysiological relevance of RBD in neurodegenerative disease. Furthermore, longitudinal studies in patients with idiopathic RBD are warranted to characterize the natural history of such patients and prepare for future therapeutic trials.
DOI: 10.1002/glia.440070113
1993
Cited 806 times
Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease
Microglia are associated with central nervous system (CNS) pathology of both Alzheimer's disease (AD) and the acquired immunodeficiency syndrome (AIDS). In AD, microglia, especially those associated with amyloid deposits, have a phenotype that is consistent with a state of activation, including immunoreactivity with antibodies to class II major histocompatibility antigens and to inflammatory cytokines (interleukin-1-beta and tumor necrosis factor-alpha). Evidence from other studies in rodents indicate that microglia can be activated by neuronal degeneration. These results suggest that microglial activation in AD may be secondary to neurodegeneration and that, once activated, microglia may participate in a local inflammatory cascade that promotes tissue damage and contributes to amyloid formation. In AIDS, microglia are the primary target of retroviral infection. Both ramified and ameboid microglia, in addition to multinucleated giant cells, are infected by the human immunodeficiency virus (HIV-1). The mechanism of microglial infection is not known since microglia lack CD4, the HIV-1 receptor. Microglia display high affinity receptors for immunoglobulins, which makes antibody-mediated viral uptake a possible mechanism of infection. In AIDS, the extent of active viral infection and cytokine production may be critically dependent upon other factors, such as the presence of coinfecting agents. In the latter circumstance, very severe CNS pathology may emerge, including necrotizing lesions. In other circumstances, HIV infection of microglia probably leads to CNS pathology by indirect mechanisms, including release of viral proteins (gp120) and toxic cytokines. Such a mechanism is the best hypothesis for the pathogenesis of vacuolar myelopathy in adults and the diffuse gliosis that characterizes pediatric AIDS, in which very little viral antigen can be detected.
DOI: 10.1002/ana.410390613
1996
Cited 799 times
Molecular basis of phenotypic variability in sporadc creudeldt‐jakob disease
We sequenced the prion protein gene and studied the biochemical characteristics and the intracerebral distribution of protease-resistant prion protein with Western blot and immunohistochemistry in 19 cases of sporadic Creutzfeldt-Jakob disease. We identified four groups of subjects defined by the genotype at codon 129 of the prion protein gene, the site of a common methionine/valine polymorphism, and two types of protease-resistant prion proteins that differed in size and glycosylation. The four Creutzfeldt-Jakob disease groups showed distinct clinicopathological features that corresponded to previously described variants. The typical Creutzfeldt-Jakob disease phenotype or myoclonic variant and the Heidenhain variant were linked to methionine homozygosity at codon 129 and to "type 1" protease-resistant prion protein. The atypical and rarer variants such as that with dementia of long duration, the ataxic variant, and the variant with kuru plaques were linked to different genotypes at codon 129 and shared the "type 2" protease-resistant prion protein. Our data indicate that the sporadic form of Creutzfeldt-Jakob disease comprises a limited number of variants. The methionine/valine polymorphism at codon 129 of the prion protein gene and two types of protease-resistant prion proteins are the major determinants of these variants. These findings suggest the existence of prion strains in humans and provide the molecular basis for a novel classification of sporadic Creutzfeldt-Jakob disease.
DOI: 10.1002/ana.21154
2007
Cited 774 times
TDP‐43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease
Abstract Objective This study aimed to determine the frequency of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD‐U) in the setting of hippocampal sclerosis (HpScl) and Alzheimer's disease (AD) using immunohistochemistry for TAR DNA binding protein 43 (TDP‐43), a putative marker for FTLD‐U. Methods Initially, 21 cases of HpScl associated with a variety of other pathological processes and 74 cases of AD were screened for FTLD‐U with TDP‐43 immunohistochemistry. A confirmation study was performed on 93 additional AD cases. Specificity of TDP‐43 antibodies was assessed using double‐immunolabeling confocal microscopy, immunoelectron microscopy, and biochemistry. Results TDP‐43 immunoreactivity was detected in 71% of HpScl and 23% of AD cases. Double immunostaining of AD cases for TDP‐43 and phospho‐tau showed that the TDP‐43–immunoreactive inclusions were usually distinct from neurofibrillary tangles. At the ultrastructural level, TDP‐43 immunoreactivity in AD was associated with granular and filamentous cytosolic material and only occasionally associated with tau filaments. Western blots of AD cases showed a band that migrated at a higher molecular weight than normal TDP‐43 that was not present in AD cases without TDP‐43 immunoreactivity. Interpretation These results suggest that as many as 20% of AD cases and more than 70% of HpScl cases have pathology similar to that found in FTLD‐U. Whether this represents concomitant FTLD‐U or is analogous to colocalization of α‐synuclein and tau in AD, reflecting a propensity for codeposition of abnormal protein conformers, remains to be determined. Ann Neurol 2007;61:435–445
DOI: 10.1016/s1474-4422(11)70156-9
2011
Cited 760 times
Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study
Background Neurofibrillary pathology has a stereotypical progression in Alzheimer's disease (AD) that is encapsulated in the Braak staging scheme; however, some AD cases are atypical and do not fit into this scheme. We aimed to compare clinical and neuropathological features between typical and atypical AD cases. Methods AD cases with a Braak neurofibrillary tangle stage of more than IV were identified from a brain bank database. By use of thioflavin-S fluorescence microscopy, we assessed the density and the distribution of neurofibrillary tangles in three cortical regions and two hippocampal sectors. These data were used to construct an algorithm to classify AD cases into typical, hippocampal sparing, or limbic predominant. Classified cases were then compared for clinical, demographic, pathological, and genetic characteristics. An independent cohort of AD cases was assessed to validate findings from the initial cohort. Findings 889 cases of AD, 398 men and 491 women with age at death of 37–103 years, were classified with the algorithm as hippocampal sparing (97 cases [11%]), typical (665 [75%]), or limbic predominant (127 [14%]). By comparison with typical AD, neurofibrillary tangle counts per 0.125 mm2 in hippocampal sparing cases were higher in cortical areas (median 13, IQR 11–16) and lower in the hippocampus (7.5, 5.2–9.5), whereas counts in limbic-predominant cases were lower in cortical areas (4.3, 3.0–5.7) and higher in the hippocampus (27, 22–35). Hippocampal sparing cases had less hippocampal atrophy than did typical and limbic-predominant cases. Patients with hippocampal sparing AD were younger at death (mean 72 years [SD 10]) and a higher proportion of them were men (61 [63%]), whereas those with limbic-predominant AD were older (mean 86 years [SD 6]) and a higher proportion of them were women (87 [69%]). Microtubule-associated protein tau (MAPT) H1H1 genotype was more common in limbic-predominant AD (54 [70%]) than in hippocampal sparing AD (24 [46%]; p=0.011), but did not differ significantly between limbic-predominant and typical AD (204 [59%]; p=0.11). Apolipoprotein E (APOE) ɛ4 allele status differed between AD subtypes only when data were stratified by age at onset. Clinical presentation, age at onset, disease duration, and rate of cognitive decline differed between the AD subtypes. These findings were confirmed in a validation cohort of 113 patients with AD. Interpretation These data support the hypothesis that AD has distinct clinicopathological subtypes. Hippocampal sparing and limbic-predominant AD subtypes might account for about 25% of cases, and hence should be considered when designing clinical, genetic, biomarker, and treatment studies in patients with AD. Funding US National Institutes of Health via Mayo Alzheimer's Disease Research Center, Mayo Clinic Study on Aging, Florida Alzheimer's Disease Research Center, and Einstein Aging Study; and State of Florida Alzheimer's Disease Initiative.
DOI: 10.1016/s1474-4422(09)70238-8
2009
Cited 753 times
Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria
To date, there have been few systematic attempts to provide a standard operating procedure for the neuropathological diagnosis of Parkinson's disease (PD). Pathological examination cannot classify the clinical syndrome with certainty; therefore, the neuropathological diagnosis is, at best, a probability statement. The neuropathological diagnosis of parkinsonism has become increasingly based on fundamental molecular underpinnings, with recognition that the genetics of parkinsonism is heterogeneous and includes disorders that are associated with and without Lewy bodies. The advent of α-synuclein immunohistochemistry has substantially improved the ability to identify Lewy pathology, particularly cortical Lewy bodies and smaller aggregates within processes and the neuropil. In this Review we discuss the diagnostic criteria for the neuropathological assessment of PD. These criteria are provisional and need to be validated through an iterative process that could help with their refinement. Additionally, we suggest future directions for neuropathology research on PD.
DOI: 10.1093/hmg/8.4.711
1999
Cited 737 times
Association of an Extended Haplotype in the Tau Gene with Progressive Supranuclear Palsy
We describe two extended haplotypes that cover the human tau gene. In a total of ∼200 unrelated caucasian individuals there is complete disequilibrium between polymorphisms which span the gene (which covers ∼100 kb of DNA). This suggests that the establishment of the two haplotypes was an ancient event and either that recombination is suppressed in this region, or that recombinant genes are selected against. Furthermore, we show that the more common haplotype (H1) is significantly over-represented in patients with progressive supranuclear palsy (PSP), extending earlier reports of an association between an intronic dinucleotide polymorphism and PSP.
DOI: 10.1016/j.neuron.2015.10.030
2015
Cited 726 times
ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function
The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins.
DOI: 10.1007/s00401-015-1515-z
2015
Cited 699 times
The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy
Chronic traumatic encephalopathy (CTE) is a neurodegeneration characterized by the abnormal accumulation of hyperphosphorylated tau protein within the brain. Like many other neurodegenerative conditions, at present, CTE can only be definitively diagnosed by post-mortem examination of brain tissue. As the first part of a series of consensus panels funded by the NINDS/NIBIB to define the neuropathological criteria for CTE, preliminary neuropathological criteria were used by 7 neuropathologists to blindly evaluate 25 cases of various tauopathies, including CTE, Alzheimer's disease, progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, primary age-related tauopathy, and parkinsonism dementia complex of Guam. The results demonstrated that there was good agreement among the neuropathologists who reviewed the cases (Cohen's kappa, 0.67) and even better agreement between reviewers and the diagnosis of CTE (Cohen's kappa, 0.78). Based on these results, the panel defined the pathognomonic lesion of CTE as an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern. The group also defined supportive but non-specific p-tau-immunoreactive features of CTE as: pretangles and NFTs affecting superficial layers (layers II-III) of cerebral cortex; pretangles, NFTs or extracellular tangles in CA2 and pretangles and proximal dendritic swellings in CA4 of the hippocampus; neuronal and astrocytic aggregates in subcortical nuclei; thorn-shaped astrocytes at the glial limitans of the subpial and periventricular regions; and large grain-like and dot-like structures. Supportive non-p-tau pathologies include TDP-43 immunoreactive neuronal cytoplasmic inclusions and dot-like structures in the hippocampus, anteromedial temporal cortex and amygdala. The panel also recommended a minimum blocking and staining scheme for pathological evaluation and made recommendations for future study. This study provides the first step towards the development of validated neuropathological criteria for CTE and will pave the way towards future clinical and mechanistic studies.
DOI: 10.1016/s0197-4580(97)00057-2
1997
Cited 690 times
Consensus Recommendations for the Postmortem Diagnosis of Alzheimer’s Disease
This report summarizes the consensus recommendations of a panel of neuropathologists from the United States and Europe to improve the postmortem diagnostic criteria for Alzheimer’s disease. The recommendations followed from a two-day workshop sponsored by the National Institute on Aging (NIA) and the Ronald and Nancy Reagan Institute of the Alzheimer’s Association to reassess the original NIA criteria for the postmortem diagnosis of Alzheimer’s disease published in 1985 [2]. The consensus recommendations for improving the neuropathological criteria for the postmortem diagnosis of Alzheimer’s disease are reported here, and the “position papers” by members of the Working Group that accompany this report elaborate on the research findings and concepts upon which these recommendations were based. Further, commentaries by other experts in the field also are included here to provide additional perspectives on these recommendations. Finally, it is anticipated that future meetings of the Working Group will reassess these recommendations and the implementation of postmortem diagnostic criteria for Alzheimer’s disease.
DOI: 10.1097/00005072-199704000-00001
1997
Cited 673 times
The Pathogenesis of Senile Plaques
Senile plaques (SP) are complicated lesions composed of diverse amyloid peptides and associated molecules, degenerating neuronal processes,a nd reactive glia. Evidence suggests that diffuse, neurocentric amyloid deposits evolve over time with formation of discrete niduses that eventually become neuritic SP. The evidence for differential amyloid precursor protein metabolism that may favor deposition of A beta 17-42 in this early, possibly aging-related lesion is discussed. This latter molecule, also known as P3, may represent a benign form of amyloid, since it lacks domains associated with activation and recruitment of glia to SP. Subsequent to deposition of A beta 1-42 and then growth of the amyloid with precipitation of soluble A beta 1-40, in an Alzheimer disease-specific process, SP increasingly become associated with activated microglia and reactive astrocytes. In response to interaction with amyloid peptides and possibly glycated proteins, microglia and astrocytes produce a number of molecules that may be locally toxic to neuronal processes in the vicinity of SP, including cytokines, reactive oxygen and nitrogen intermediates, and proteases. They also produce factors that lead to their reciprocal activation and growth, which potentiate a local inflammatory cascade. Paired helical filament- (PHF) type neurites appear to be associated with SP only in so far as neurofibrillary degeneration has progressed to affect neurons in those regions where the plaque forms. Thus, PHF-type neurites are readily apparent in SP in the amygdala at an early stage, while they are late in primary cortices and never detected in cerebellar plaques; where only dystrophic neurites are detected. If the various stages of SP pathogenesis can be further clarified, it may be possible to develop rational approaches to therapy directed at site-, cell type-, and stage-specific interventions. Although controlling the local inflammatory microenvironment of SP may hold promise for slowing lesion pathogenesis, it still remains a fundamental challenge to determine the mechanism of neurodegeneration that results in widespread neurofibrillary degeneration and eventual synaptic and neuronal loss, which is considered to be the proximate cause of the clinical dementia syndrome.
DOI: 10.1002/ana.10846
2004
Cited 644 times
Comparison of kindreds with parkinsonism and α‐synuclein genomic multiplications
Genomic triplication of the alpha-synuclein gene recently has been associated with familial Parkinson's disease in the Spellman-Muenter kindred. Here, we present an independent family, of Swedish-American descent, with hereditary early-onset parkinsonism with dementia due to alpha-synuclein triplication. Brain tissue available from affected individuals in both kindreds provided the opportunity to compare their clinical, pathological, and biochemical phenotypes. Of note, studies of brain mRNA and soluble protein levels demonstrate a doubling of alpha-synuclein expression, consistent with molecular genetic data. Pathologically, cornu ammonis 2/3 hippocampal neuronal loss appears to be a defining feature of this form of inherited parkinsonism. The profound implications of alpha-synuclein overexpression for idiopathic synucleinopathies are discussed.
DOI: 10.1101/cshperspect.a009258
2012
Cited 623 times
Parkinson's Disease and Parkinsonism: Neuropathology
Parkinsonism, the clinical term for a disorder with prominent bradykinesia and variable associated extrapyramidal signs and symptoms, is accompanied by degeneration of the nigrostriatal dopaminergic system, with neuronal loss and reactive gliosis in the substantia nigra found at autopsy. Parkinsonism is pathologically heterogeneous, with the most common pathologic substrates related to abnormalities in the presynaptic protein α-synuclein or the microtubule binding protein tau. In idiopathic Parkinson's disease (PD), α-synuclein accumulates in neuronal perikarya (Lewy bodies) and neuronal processes (Lewy neurites). The disease process is multifocal and involves select central nervous system neurons and peripheral autonomic nervous system neurons. The particular set of neurons affected determines nonmotor clinical presentations. Multiple system atrophy (MSA) is the other major α-synucleinopathy. It is also associated with autonomic dysfunction and in some cases with cerebellar signs. The hallmark histopathologic feature of MSA is accumulation of α-synuclein within glial cytoplasmic inclusions (GCI). The most common of the Parkinsonian tauopathies is progressive supranuclear palsy (PSP), which is clinically associated with severe postural instability leading to early falls. The tau pathology of PSP also affects both neurons and glia. Given the population frequency of PD, α-synuclein pathology similar to that in PD, but not accompanied by neuronal loss, is relatively common (10% of people over 65 years of age) in neurologically normal individuals, leading to proposed staging schemes for PD progression. Although MSA-like and PSP-like pathology can be detected in neurologically normal individuals, such cases are too infrequent to permit assessment of patterns of disease progression.
DOI: 10.1073/pnas.0500466102
2005
Cited 618 times
Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration <i>in vivo</i>
Neurofibrillary tangles composed of hyperphosphorylated, aggregated tau are a common pathological feature of tauopathies, including Alzheimer's disease. Abnormal phosphorylation of tau by kinases or phosphatases has been proposed as a pathogenic mechanism in tangle formation. To investigate whether kinase inhibition can reduce tauopathy and the degeneration associated with it in vivo, transgenic mice overexpressing mutant human tau were treated with the glycogen synthase kinase-3 (GSK-3) inhibitor lithium chloride. Treatment resulted in significant inhibition of GSK-3 activity. Lithium administration also resulted in significantly lower levels of phosphorylation at several epitopes of tau known to be hyperphosphorylated in Alzheimer's disease and significantly reduced levels of aggregated, insoluble tau. Administration of a second GSK-3 inhibitor also correlated with reduced insoluble tau levels, supporting the idea that lithium exerts its effect through GSK-3 inhibition. Levels of aggregated tau correlated strongly with degree of axonal degeneration, and lithium-chloride-treated mice showed less degeneration if administration was started during early stages of tangle development. These results support the idea that kinases are involved in tauopathy progression and that kinase inhibitors may be effective therapeutically.
DOI: 10.1093/jnen/61.11.935
2002
Cited 615 times
Office of Rare Diseases Neuropathologic Criteria for Corticobasal Degeneration
A working group supported by the Office of Rare Diseases of the National Institutes of Health formulated neuropathologic criteria for corticobasal degeneration (CBD) that were subsequently validated by an independent group of neuropathologists. The criteria do not require a specific clinical phenotype, since CBD can have diverse clinical presentations, such as progressive asymmetrical rigidity and apraxia, progressive aphasia, or frontal lobe dementia. Cortical atrophy, ballooned neurons, and degeneration of the substantia nigra have been emphasized in previous descriptions and are present in CBD, but the present criteria emphasize tau-immunoreactive lesions in neurons, glia, and cell processes in the neuropathologic diagnosis of CBD. The minimal pathologic features for CBD are cortical and striatal tau-positive neuronal and glial lesions, especially astrocytic plaques and thread-like lesions in both white matter and gray matter, along with neuronal loss in focal cortical regions and in the substantia nigra. The methods required to make this diagnosis include histologic stains to assess neuronal loss, spongiosis and ballooned neurons, and a method to detect tau-positive neuronal and glial lesions. Use of either the Gallyas silver staining method or immunostains with sensitive tau antibodies is acceptable. In cases where ballooned neurons are sparse or difficult to detect, immunostaining for phospho-neurofilament or alpha-B-crystallin may prove helpful. Methods to assess Alzheimer-type pathology and Lewy body pathology are necessary to rule out other causes of dementia and Parkinsonism. Using these criteria provides good differentiation of CBD from other tauopathies, except frontotemporal dementia and Parkinsonism linked to chromosome 17, where additional clinical or molecular genetic information is required to make an accurate diagnosis.
DOI: 10.1097/00002093-200210000-00001
2002
Cited 595 times
Relative Frequencies of Alzheimer Disease, Lewy Body, Vascular and Frontotemporal Dementia, and Hippocampal Sclerosis in the State of Florida Brain Bank
Alzheimer disease (AD) is the most common dementing illness in the elderly, but there is equivocal evidence regarding the frequency of other disorders such as Lewy body disease (LBD), vascular dementia (VaD), frontotemporal dementia (FTD), and hippocampal sclerosis (HS). This ambiguity may be related to factors such as the age and gender of subjects with dementia. Therefore, the objective of this study was to calculate the relative frequencies of AD, LBD, VaD, FTD, and HS among 382 subjects with dementia from the State of Florida Brain Bank and to study the effect of age and gender on these frequencies. AD was the most frequent pathologic finding (77%), followed by LBD (26%), VaD (18%), HS (13%), and FTD (5%). Mixed pathology was common: Concomitant AD was present in 66% of LBD patients, 77% of VaD patients, and 66% of HS patients. The relative frequency of VaD increased with age, whereas the relative frequencies of FTD and LBD declined with age. Males were overrepresented among those with LBD, whereas females were overrepresented among AD subjects with onset age over 70 years. These estimates of the a priori probabilities of dementing disorders have implications for clinicians and researchers.
DOI: 10.1016/j.neurobiolaging.2009.04.002
2009
Cited 583 times
Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease
To determine the frequency and possible cognitive effect of histological Alzheimer's disease (AD) in autopsied older nondemented individuals. Senile plaques (SPs) and neurofibrillary tangles (NFTs) were assessed quantitatively in 97 cases from 7 Alzheimer's Disease Centers (ADCs). Neuropathological diagnoses of AD (npAD) were also made with four sets of criteria. Adjusted linear mixed models tested differences between participants with and without npAD on the quantitative neuropathology measures and psychometric test scores prior to death. Spearman rank-order correlations between AD lesions and psychometric scores at last assessment were calculated for cases with pathology in particular regions. Washington University Alzheimer's Disease Research Center. Ninety-seven nondemented participants who were age 60 years or older at death (mean = 84 years). About 40% of nondemented individuals met at least some level of criteria for npAD; when strict criteria were used, about 20% of cases had npAD. Substantial overlap of Braak neurofibrillary stages occurred between npAD and no-npAD cases. Although there was no measurable cognitive impairment prior to death for either the no-npAD or npAD groups, cognitive function in nondemented aging appears to be degraded by the presence of NFTs and SPs. Neuropathological processes related to AD in persons without dementia appear to be associated with subtle cognitive dysfunction and may represent a preclinical stage of the illness. By age 80–85 years, many nondemented older adults have substantial AD pathology.
DOI: 10.1038/s41591-020-0815-6
2020
Cited 582 times
Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation
Our understanding of Alzheimer's disease (AD) pathophysiology remains incomplete. Here we used quantitative mass spectrometry and coexpression network analysis to conduct the largest proteomic study thus far on AD. A protein network module linked to sugar metabolism emerged as one of the modules most significantly associated with AD pathology and cognitive impairment. This module was enriched in AD genetic risk factors and in microglia and astrocyte protein markers associated with an anti-inflammatory state, suggesting that the biological functions it represents serve a protective role in AD. Proteins from this module were elevated in cerebrospinal fluid in early stages of the disease. In this study of >2,000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify proteins and biological processes in AD brains that may serve as therapeutic targets and fluid biomarkers for the disease.
DOI: 10.1016/0197-4580(92)90027-u
1992
Cited 574 times
Identification of normal and pathological aging in prospectively studied nondemented elderly humans
Results of a standardized histochemical and immunocytochemical analysis of the brains of 14 nondemented elderly humans for whom prospective neurological and neuropsychological data had been collected for 3 to 8 years before death suggested that nondemented elderly humans fall into two pathological subgroups that are not clinically distinguishable. One was associated with moderate to marked cerebral amyloid deposition ("pathological aging"), while the other had either minimal or no amyloid deposition ("normal aging"). Neocortical and hippocampal neurofibrillary degeneration was either completely absent or of very limited degree in both subgroups. Both subgroups had ubiquitin-immunoreactive dystrophic neurites in the cerebral cortex and granular degeneration of myelin in white matter. These ubiquitin-immunoreactive structures seem to be a universal and invariant manifestation of brain aging, but the same cannot be said for amyloid deposition and neurofibrillary degeneration. Pathological aging might be preclinical Alzheimer's disease, but it currently cannot be distinguished from normal aging by even sensitive neuropsychological measures. These findings provide strong support for the hypothesis that cerebral amyloid deposition is not necessarily associated with clinically apparent cognitive dysfunction and that additional factors, such as neuronal or synaptic loss or widespread cytoskeletal aberrations, are necessary for dementia in AD.
DOI: 10.1093/jnen/62.11.1087
2003
Cited 572 times
Neuropathology of Cognitively Normal Elderly
Despite general agreement about the boundaries of Alzheimer disease (AD), establishing a maximum limit for Alzheimer-type pathology in cognitively intact individuals might aid in defining more precisely the point at which Alzheimer pathology becomes clinically relevant. In this study, we examined the neuropathological changes in the brains of 39 longitudinally followed. cognitively normal elderly individuals (24 women, 15 men; age range 74-95, median 85 years). Neuropathological changes of the Alzheimer type were quantified by determining neurofibrillary tangle (NFT) staging by the method of Braak and Braak and by quantification of the abundance of diffuse, cored, and neuritic plaque burden using the scheme developed by the Consortium to Establish a Registry for Alzheimer Disease (CERAD). Vascular, Lewy body, and argyrophilic grain pathology were also assessed. We found 34 subjects (87%) with a Braak stage <IV; 32 subjects (82%) with less than moderate numbers of cored plaques and 37 subjects (95%) with less than moderate numbers of tau-positive neuritic plaques. Many subjects had moderate or frequent diffuse plaques (n = 19, 49%). By the National Institute on Aging-Reagan Institute (NIA-RI) criteria, none of our cases met criteria for high "likelihood" of AD. Four met NIA-RI criteria for intermediate "likelihood." Seven cases met CERAD criteria for possible AD. Nineteen met Khachaturian criteria for AD. Only 1 subject had neocortical Lewy bodies. Small, old infarcts were common, but no subjects had more than 2 of these and none had a single large infarction. Thus, the majority of individuals who are cognitively normal near the time of their death have minimal amounts of tau-positive neuritic pathology (Braak stage <IV and neuritic plaques <6 per x100 field in the most affected neocortical region). The few subjects with more severe AD pathology can be expected based on incidence rates of AD in the very elderly.
DOI: 10.1001/archneur.63.5.665
2006
Cited 569 times
Neuropathologic Features of Amnestic Mild Cognitive Impairment
The neuropathologic substrate of amnestic mild cognitive impairment (aMCI) is not known.To determine the neuropathologic features of patients who died while their clinical classification was aMCI.Cohort study.Community based.Sixty-six individuals, including 15 who had memory impairment beyond that allowed for aging but who were not demented, were studied along with 28 clinically healthy individuals and 23 patients with probable Alzheimer disease (AD) for comparison.Standard neuropathologic techniques and classification according to Khachaturian, Consortium to Establish a Registry for Alzheimer Disease, and National Institute on Aging-Reagan criteria were used to analyze autopsy tissue from 15 individuals who died while their clinical diagnosis was aMCI. For comparison, autopsy data on age-matched groups of clinically healthy individuals and patients with probable AD were analyzed.Most patients with aMCI did not meet the neuropathologic criteria for AD, but their pathologic findings suggest a transitional state of evolving AD. All the patients with aMCI had pathologic findings involving medial temporal lobe structures, likely accounting for their memory impairment. In addition, there were many concomitant pathologic abnormalities, including argyrophilic grain disease, hippocampal sclerosis, and vascular lesions.The neuropathologic features of aMCI matched the clinical features and seemed to be intermediate between the neurofibrillary changes of aging and the pathologic features of very early AD.
DOI: 10.1126/science.3083509
1986
Cited 566 times
A Neuronal Antigen in the Brains of Alzheimer Patients
A monoclonal antibody was prepared against pooled homogenates of brain tissue from patients with Alzheimer's disease. This antibody recognizes an antigen present in much higher concentration in certain brain regions of Alzheimer patients than in normal brain. The antigen appears to be a protein present in neurons involved in the formation of neuritic plaques and neurofibrillary tangles, and in some morphologically normal neurons in sections from Alzheimer brains. Partial purification and Western blot analysis revealed the antigen from Alzheimer brain to be a single protein with a molecular weight of 68,000. Application of the same purification procedure to normal brain tissue results in the detection of small amounts of a protein of lower molecular weight.
DOI: 10.1016/s1474-4422(03)00619-7
2004
Cited 566 times
Dementia with Lewy bodies
Dementia with Lewy bodies (DLB) is the second commonest cause of neurodegenerative dementia in older people. It is part of the range of clinical presentations that share a neuritic pathology based on abnormal aggregation of the synaptic protein alpha-synuclein. DLB has many of the clinical and pathological characteristics of the dementia that occurs during the course of Parkinson's disease. Here we review the current state of scientific knowledge on DLB. Accurate identification of patients is important because they have specific symptoms, impairments, and functional disabilities that differ from those of other common types of dementia. Severe neuroleptic sensitivity reactions are associated with significantly increased morbidity and mortality. Treatment with cholinesterase inhibitors is well tolerated by most patients and substantially improves cognitive and neuropsychiatric symptoms. Clear guidance on the management of DLB is urgently needed. Virtually unrecognised 20 years ago, DLB could within this decade be one of the most treatable neurodegenerative disorders of late life.
DOI: 10.1172/jci29715
2007
Cited 561 times
The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins
A primary pathologic component of Alzheimer's disease (AD) is the formation of neurofibrillary tangles composed of hyperphosphorylated tau (p-tau).Expediting the removal of these p-tau species may be a relevant therapeutic strategy.Here we report that inhibition of Hsp90 led to decreases in p-tau levels independent of heat shock factor 1 (HSF1) activation.A critical mediator of this mechanism was carboxy terminus of Hsp70-interacting protein (CHIP), a tau ubiquitin ligase.Cochaperones were also involved in Hsp90-mediated removal of p-tau, while those of the mature Hsp90 refolding complex prevented this effect.This is the first demonstration to our knowledge that blockade of the refolding pathway promotes p-tau turnover through degradation.We also show that peripheral administration of a novel Hsp90 inhibitor promoted selective decreases in p-tau species in a mouse model of tauopathy, further suggesting a central role for the Hsp90 complex in the pathogenesis of tauopathies.When taken in the context of known high-affinity Hsp90 complexes in affected regions of the AD brain, these data implicate a central role for Hsp90 in the development of AD and other tauopathies and may provide a rationale for the development of novel Hsp90-based therapeutic strategies. ResultsEC102 is a blood-brain barrier-permeable Hsp90 inhibitor.We previously identified several low-molecular weight Hsp90 inhibitors that Nonstandard abbreviations used: AD, Alzheimer's disease; biotin-GA, biotinlabeled GA; CHIP, carboxy terminus of Hsp70-interacting protein; GA, geldanamycin; GSK3β, glycogen synthase kinase 3β; Hsc, heat shock cognate; Hop, Hsp70/Hsp90organizing protein; HSF1, heat shock factor 1; Htau mouse, transgenic mouse humanized for the tau gene; MARK2, microtubule-affinity regulating kinase 2; myc-CHIP, myc-tagged CHIP; PAR-1, PAR-1 serine/threonine kinase; p-tau, phosphorylated tau; V5-tau, V5-tagged tau.
DOI: 10.1212/wnl.38.11.1682
1988
Cited 552 times
Clinico‐pathologic studies in dementia
We compared neuropsychological findings in 28 longitudinally evaluated elderly subjects with their postmortem neuropathology, including senile plaque and neurofibrillary tangle counts from standardized sections. Nine of the subjects were not demented when evaluated just prior to their death. Numerous cortical senile plaques and other changes of Alzheimer's disease (AD) occurred in six of nine nondemented old-old subjects. Five of these six subjects had shown decline on yearly neuropsychological tests but their cognitive impairment was too mild to meet clinical criteria for dementia. Whereas cortical senile plaque count did not distinguish well between demented and nondemented subjects, every subject with numerous cortical neurofibrillary tangles was demented. The nondemented subjects with Alzheimer pathology may have had "preclinical" AD, or numerous cortical plaques may occur in some elderly subjects who would never develop clinical dementia.
DOI: 10.1212/wnl.58.5.750
2002
Cited 534 times
Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia
To assess the diagnostic specificity of MRI-defined hippocampal atrophy for AD among individuals with a variety of pathologically confirmed conditions associated with dementia as well as changes attributable to typical aging, and to measure correlations among premortem MRI measurements of hippocampal atrophy, mental status examination performance, and the pathologic stage of AD.An unselected series of 67 individuals participating in the Mayo Alzheimer's Disease Research Center/Alzheimer's Disease Patient Registry who had undergone a standardized antemortem MRI study and also postmortem examination were identified. Hippocampal volumes were measured from antemortem MRI. Each postmortem specimen was assigned a pathologic diagnosis and in addition, the severity of AD pathology was staged using the method of Braak and Braak.Individuals with an isolated pathologic diagnosis of AD, hippocampal sclerosis, frontotemporal degeneration, and neurofibrillary tangle--only degeneration usually had substantial hippocampal atrophy, while those with changes of typical aging did not. Among all 67 subjects, correlations (all p < 0.001) were observed between hippocampal volume and Braak and Braak stage (r = -0.39), between hippocampal volume and Mini-Mental State Examination (MMSE) score (r = 0.60), and between MMSE score and Braak and Braak stage (r = -0.41).Hippocampal atrophy, while not specific for AD, was a fairly sensitive marker of the pathologic AD stage (particularly among subjects with isolated AD pathology [r = -0.63, p = 0.001]) and consequent cognitive status.
DOI: 10.1073/pnas.0900688106
2009
Cited 528 times
Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity
Inclusions of TAR DNA-binding protein-43 (TDP-43), a nuclear protein that regulates transcription and RNA splicing, are the defining histopathological feature of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-Us) and sporadic and familial forms of amyotrophic lateral sclerosis (ALS). In ALS and FTLD-U, aggregated, ubiquitinated, and N-terminally truncated TDP-43 can be isolated from brain tissue rich in neuronal and glial cytoplasmic inclusions. The loss of TDP-43 function resulting from inappropriate cleavage, translocation from the nucleus, or its sequestration into inclusions could play important roles in neurodegeneration. However, it is not known whether TDP-43 fragments directly mediate toxicity and, more specifically, whether their abnormal aggregation is a cause or consequence of pathogenesis. We report that the ectopic expression of a ≈25-kDa TDP-43 fragment corresponding to the C-terminal truncation product of caspase-cleaved TDP-43 leads to the formation of toxic, insoluble, and ubiquitin- and phospho-positive cytoplasmic inclusions within cells. The 25-kDa C-terminal fragment is more prone to phosphorylation at S409/S410 than full-length TDP-43, but phosphorylation at these sites is not required for inclusion formation or toxicity. Although this fragment shows no biological activity, its exogenous expression neither inhibits the function nor causes the sequestration of full-length nuclear TDP-43, suggesting that the 25-kDa fragment can induce cell death through a toxic gain-of-function. Finally, by generating a conformation-dependent antibody that detects C-terminal fragments, we show that this toxic cleavage product is specific for pathologic inclusions in human TDP-43 proteinopathies.
DOI: 10.1006/exnr.1999.7085
1999
Cited 527 times
The Levels of Soluble versus Insoluble Brain Aβ Distinguish Alzheimer's Disease from Normal and Pathologic Aging
The abundance and solubility of Abeta peptides are critical determinants of amyloidosis in Alzheimer's disease (AD). Hence, we compared levels of total soluble, insoluble, and total Abeta1-40 and Abeta1-42 in AD brains with those in age-matched normal and pathologic aging brains using a sandwich enzyme-linked immunosorbent assay (ELISA). Since the measurement of Abeta1-40 and Abeta1-42 depends critically on the specificity of the monoclonal antibodies used in the sandwich ELISA, we first demonstrated that each assay is specific for Abeta1-40 or Abeta1-42 and the levels of these peptides are not affected by the amyloid precursor protein in the brain extracts. Thus, this sandwich ELISA enabled us to show that the average levels of total cortical soluble and insoluble Abeta1-40 and Abeta1-42 were highest in AD, lowest in normal aging, and intermediate in pathologic aging. Remarkably, the average levels of insoluble Abeta1-40 were increased 20-fold while the average levels of insoluble Abeta1-42 were increased only 2-fold in the AD brains compared to pathologic aging brains. Further, the soluble pools of Abeta1-40 and Abeta1-42 were the largest fractions of total Abeta in the normal brain (i.e., 50 and 23%, respectively), but they were the smallest in the AD brain (i.e., 2.7 and 0.7%, respectively) and intermediate (i.e., 8 and 0.8%, respectively) in pathologic aging brains. Thus, our data suggest that pathologic aging is a transition state between normal aging and AD. More importantly, our findings imply that a progressive shift of brain Abeta1-40 and Abeta1-42 from soluble to insoluble pools and a profound increase in the levels of insoluble Abeta1-40 plays mechanistic roles in the onset and/or progression of AD.
DOI: 10.1016/j.neuron.2005.06.030
2005
Cited 523 times
Aβ42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice
Considerable circumstantial evidence suggests that Abeta42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Abeta42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Abeta1-40 or Abeta1-42 in the absence of human amyloid beta protein precursor (APP) overexpression. Mice expressing high levels of Abeta1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Abeta1-42 accumulate insoluble Abeta1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Abeta deposits. When mice expressing Abeta1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Abeta1-42 is essential for amyloid deposition in the parenchyma and also in vessels.
DOI: 10.1093/hmg/ddl241
2006
Cited 520 times
Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration
Null mutations in the progranulin gene ( PGRN ) were recently reported to cause tau-negative frontotemporal dementia linked to chromosome 17. We assessed the genetic contribution of PGRN mutations in an extended population of patients with frontotemporal lobar degeneration (FTLD) ( N =378). Mutations were identified in 10% of the total FTLD population and 23% of patients with a positive family history. This mutation frequency dropped to 5% when analysis was restricted to an unbiased FTLD subpopulation ( N =167) derived from patients referred to Alzheimer's Disease Research Centers (ADRC). Among the ADRC patients, PGRN mutations were equally frequent as mutations in the tau gene ( MAPT ). We identified 23 different pathogenic PGRN mutations, including a total of 21 nonsense, frameshift and splice-site mutations that cause premature termination of the coding sequence and degradation of the mutant RNA by nonsense-mediated decay. We also observed an unusual splice-site mutation in the exon 1 5′ splice site, which leads to loss of the Kozac sequence, and a missense mutation in the hydrophobic core of the PGRN signal peptide. Both mutations revealed novel mechanisms that result in loss of functional PGRN. One mutation, c.1477C>T (p.Arg493X), was detected in eight independently ascertained familial FTLD patients who were shown to share a common extended haplotype over the PGRN genomic region. Clinical examination of patients with PGRN mutations revealed highly variable onset ages with language dysfunction as a common presenting symptom. Neuropathological examination showed FTLD with ubiquitin-positive cytoplasmic and intranuclear inclusions in all PGRN mutation carriers.
DOI: 10.1007/s00401-013-1192-8
2013
Cited 512 times
Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.
DOI: 10.1212/01.wnl.0000256715.13907.d3
2007
Cited 508 times
DLB and PDD boundary issues
For more than a decade, researchers have refined criteria for the diagnosis of dementia with Lewy bodies (DLB) and at the same time have recognized that cognitive impairment and dementia occur commonly in patients with Parkinson disease (PD). This article addresses the relationship between DLB, PD, and PD with dementia (PDD). The authors agreed to endorse “Lewy body disorders” as the umbrella term for PD, PDD, and DLB, to promote the continued practical use of these three clinical terms, and to encourage efforts at drug discovery that target the mechanisms of neurodegeneration shared by these disorders of α-synuclein metabolism. We concluded that the differing temporal sequence of symptoms and clinical features of PDD and DLB justify distinguishing these disorders. However, a single Lewy body disorder model was deemed more useful for studying disease pathogenesis because abnormal neuronal α-synuclein inclusions are the defining pathologic process common to both PDD and DLB. There was consensus that improved understanding of the pathobiology of α-synuclein should be a major focus of efforts to develop new disease-modifying therapies for these disorders. The group agreed on four important priorities: 1) continued communication between experts who specialize in PDD or DLB; 2) initiation of prospective validation studies with autopsy confirmation of DLB and PDD; 3) development of practical biomarkers for α-synuclein pathologies; 4) accelerated efforts to find more effective treatments for these diseases.
DOI: 10.1038/ng.859
2011
Cited 503 times
Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy
Progressive supranuclear palsy (PSP) is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common of which is Alzheimer's disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports. To identify common genetic variation contributing to risk for tauopathies, we carried out a genome-wide association study of 1,114 individuals with PSP (cases) and 3,247 controls (stage 1) followed by a second stage in which we genotyped 1,051 cases and 3,560 controls for the stage 1 SNPs that yielded P ≤ 10(-3). We found significant previously unidentified signals (P < 5 × 10(-8)) associated with PSP risk at STX6, EIF2AK3 and MOBP. We confirmed two independent variants in MAPT affecting risk for PSP, one of which influences MAPT brain expression. The genes implicated encode proteins for vesicle-membrane fusion at the Golgi-endosomal interface, for the endoplasmic reticulum unfolded protein response and for a myelin structural component.
DOI: 10.1016/j.neuron.2017.07.025
2017
Cited 499 times
TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.
DOI: 10.1038/ng.536
2010
Cited 493 times
Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
DOI: 10.1038/ncomms4996
2014
Cited 467 times
ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43
Mitochondria and the endoplasmic reticulum (ER) form tight structural associations and these facilitate a number of cellular functions. However, the mechanisms by which regions of the ER become tethered to mitochondria are not properly known. Understanding these mechanisms is not just important for comprehending fundamental physiological processes but also for understanding pathogenic processes in some disease states. In particular, disruption to ER-mitochondria associations is linked to some neurodegenerative diseases. Here we show that the ER-resident protein VAPB interacts with the mitochondrial protein tyrosine phosphatase-interacting protein-51 (PTPIP51) to regulate ER-mitochondria associations. Moreover, we demonstrate that TDP-43, a protein pathologically linked to amyotrophic lateral sclerosis and fronto-temporal dementia perturbs ER-mitochondria interactions and that this is associated with disruption to the VAPB-PTPIP51 interaction and cellular Ca(2+) homeostasis. Finally, we show that overexpression of TDP-43 leads to activation of glycogen synthase kinase-3β (GSK-3β) and that GSK-3β regulates the VAPB-PTPIP51 interaction. Our results describe a new pathogenic mechanism for TDP-43.
DOI: 10.1523/jneurosci.1630-10.2010
2010
Cited 461 times
Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice
Transactivation response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). Mutations in TARDBP , the gene encoding TDP-43, are associated with sporadic and familial ALS, yet multiple neurodegenerative diseases exhibit TDP-43 pathology without known TARDBP mutations. While TDP-43 has been ascribed a number of roles in normal biology, including mRNA splicing and transcription regulation, elucidating disease mechanisms associated with this protein is hindered by the lack of models to dissect such functions. We have generated transgenic (TDP-43 PrP ) mice expressing full-length human TDP-43 (hTDP-43) driven by the mouse prion promoter to provide a tool to analyze the role of wild-type hTDP-43 in the brain and spinal cord. Expression of hTDP-43 caused a dose-dependent downregulation of mouse TDP-43 RNA and protein. Moderate overexpression of hTDP-43 resulted in TDP-43 truncation, increased cytoplasmic and nuclear ubiquitin levels, and intranuclear and cytoplasmic aggregates that were immunopositive for phosphorylated TDP-43. Of note, abnormal juxtanuclear aggregates of mitochondria were observed, accompanied by enhanced levels of Fis1 and phosphorylated DLP1, key components of the mitochondrial fission machinery. Conversely, a marked reduction in mitofusin 1 expression, which plays an essential role in mitochondrial fusion, was observed in TDP-43 PrP mice. Finally, TDP-43 PrP mice showed reactive gliosis, axonal and myelin degeneration, gait abnormalities, and early lethality. This TDP-43 transgenic line provides a valuable tool for identifying potential roles of wild-type TDP-43 within the CNS and for studying TDP-43-associated neurotoxicity.
DOI: 10.1016/s0896-6273(03)00259-9
2003
Cited 449 times
Cdk5 Is a Key Factor in Tau Aggregation and Tangle Formation In Vivo
Tau aggregation is a common feature of neurodegenerative diseases such as Alzheimer's disease, and hyperphosphorylation of tau has been implicated as a fundamental pathogenic mechanism in this process. To examine the impact of cdk5 in tau aggregation and tangle formation, we crossed transgenic mice overexpressing the cdk5 activator p25, with transgenic mice overexpressing mutant (P301L) human tau. Tau was hyperphosphorylated at several sites in the double transgenics, and there was a highly significant accumulation of aggregated tau in brainstem and cortex. This was accompanied by increased numbers of silver-stained neurofibrillary tangles (NFTs). Insoluble tau was also associated with active GSK. Thus, cdk5 can initiate a major impact on tau pathology progression that probably involves several kinases. Kinase inhibitors may thus be beneficial therapeutically.
DOI: 10.1523/jneurosci.0587-07.2007
2007
Cited 446 times
Accumulation of Pathological Tau Species and Memory Loss in a Conditional Model of Tauopathy
Neurofibrillary tangles (NFTs) are a pathological hallmark of Alzheimer's disease and other tauopathies, but recent studies in a conditional mouse model of tauopathy (rTg4510) have suggested that NFT formation can be dissociated from memory loss and neurodegeneration. This suggests that NFTs are not the major neurotoxic tau species, at least during the early stages of pathogenesis. To identify other neurotoxic tau protein species, we performed biochemical analyses on brain tissues from the rTg4510 mouse model and then correlated the levels of these tau proteins with memory loss. We describe the identification and characterization of two forms of tau multimers (140 and 170 kDa), whose molecular weight suggests an oligomeric aggregate, that accumulate early in the pathogenic cascade in this mouse model. Similar tau multimers were detected in a second mouse model of tauopathy (JNPL3) and in tissue from patients with Alzheimer's disease and FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17). Moreover, levels of the tau multimers correlated consistently with memory loss at various ages in the rTg4510 mouse model. Our findings suggest that accumulation of early-stage aggregated tau species, before the formation of NFT, is associated with the development of functional deficits during the pathogenic progression of tauopathy.
DOI: 10.1523/jneurosci.17-10-03588.1997
1997
Cited 432 times
Aberrant Expression of Mitotic Cdc2/Cyclin B1 Kinase in Degenerating Neurons of Alzheimer’s Disease Brain
We have shown previously that M-phase phospho-epitopes accumulate in neuronal tau proteins incorporated into the hallmark neurofibrillary tangles (NFT) of Alzheimer's disease (AD). In M phase, the epitopes are produced by cdc2/cyclin B1 kinase by a highly conserved mechanism believed to be quiescent in terminally differentiated neurons of adult brain. To determine whether an M-phase mechanism is possible in AD neurons, we first investigated the presence of cdc2 and cyclin B1 in AD. Both proteins were enriched in neurons with NFT and in neurons susceptible to NFT. An antibody specific for catalytically active cdc2 stained numerous NFT-containing neurons in AD but did not react with normal neurons. Double-labeling studies showed that active cdc2 and cyclin B1 coexist in AD neurons and co-localize with AD-specific mitotic phospho-epitopes. Mitotic kinase purified from AD and normal brain, using the yeast p13suc1 protein as affinity ligand, showed higher histone H1 phosphorylation activity in AD. Accordingly, the levels of cdc2 and cyclin B1 in p13suc1 fractions from AD were higher than normal. Consistent with a physiological relationship between NFT and mitotic kinase, NFT proteins co-purified with and became phosphorylated by the p13suc1-bound kinase in vitro. Furthermore, cdc2/cyclin B1 is the only one of several proline-directed kinases that created the TG/MC mitotic phospho-epitopes in recombinant tau in vitro. These findings suggest that aberrantly reexpressed cdc2/cyclin B1 in NFT-bearing neurons in AD brain contributes to the generation of M-phase phospho-epitopes in NFT.
DOI: 10.1038/ng.1027
2011
Cited 432 times
Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
DOI: 10.1097/00005072-199601000-00010
1996
Cited 422 times
Validity and Reliability of the Preliminary NINDS Neuropathologic Criteria for Progressive Supranuclear Palsy and Related Disorders
We investigated the validity and reliability of diagnoses made by eight neuropathologists who used the preliminary NINDS neuropathologic diagnostic criteria for progressive supranuclear palsy (PSP) and related disorders. The specific disorders were typical, atypical, and combined PSP, postencephalitic parkinsonism, corticobasal ganglionic degeneration, and Pick's disease. These disorders were chosen because of the difficulties in their neuropathologic differentiation. We assessed validity by measuring sensitivity and positive predictive value. Reliability was evaluated by measuring pairwise and group agreement. From a total of 62 histologic cases, each neuropathologist independently classified 16 to 19 cases for the pairwise analysis and 5 to 6 cases for the group analysis. The neuropathologists were unaware of the study design, unfamiliar with the assigned cases, and initially had no clinical information about the cases. Our results showed that with routine sampling and staining methods, neuropathologic examination alone was not fully adequate for differentiating the disorders. The main difficulties were discriminating the subtypes of PSP and separating postencephalitic parkinsonism from PSP. Corticobasal ganglionic degeneration and Pick's disease were less difficult to distinguish from PSP. The addition of minimal clinical information contributed to the accuracy of the diagnosis. On the basis of results obtained, we propose clinicopathologic diagnostic criteria to improve on the NINDS criteria.
DOI: 10.1038/s41593-017-0047-3
2018
Cited 422 times
TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD
The cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a common histopathological hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD). However, the composition of aggregates and their contribution to the disease process remain unknown. Here we used proximity-dependent biotin identification (BioID) to interrogate the interactome of detergent-insoluble TDP-43 aggregates and found them enriched for components of the nuclear pore complex and nucleocytoplasmic transport machinery. Aggregated and disease-linked mutant TDP-43 triggered the sequestration and/or mislocalization of nucleoporins and transport factors, and interfered with nuclear protein import and RNA export in mouse primary cortical neurons, human fibroblasts and induced pluripotent stem cell-derived neurons. Nuclear pore pathology is present in brain tissue in cases of sporadic ALS and those involving genetic mutations in TARDBP and C9orf72. Our data strongly implicate TDP-43-mediated nucleocytoplasmic transport defects as a common disease mechanism in ALS/FTD.
DOI: 10.1038/ng1095-219
1995
Cited 421 times
The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families
DOI: 10.1016/j.ajhg.2012.04.021
2012
Cited 415 times
Strikingly Different Clinicopathological Phenotypes Determined by Progranulin-Mutation Dosage
We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states.
DOI: 10.1371/journal.pgen.1000193
2008
Cited 414 times
Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43–positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the ∼25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.
DOI: 10.1212/01.wnl.0000191307.69661.c3
2006
Cited 414 times
Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP
<b>Objective: </b> To examine the relationship between early clinical features, pathologies, and biochemistry of the frontotemporal lobar degenerations (FTLDs), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). <b>Methods: </b> The authors conducted pathologic reexamination with the most recent immunohistochemistry of all cases diagnosed with FTLD, PSP, and CBD between 1970 and 2004. The authors also reviewed the early clinical features for clinical diagnosis and application of published research criteria. <b>Results: </b> Of 127 cases analyzed, 57 had a pathologic diagnosis of FTLD, 49 PSP, and 21 CBD. Of these, 38 were clinically reclassified as frontal variant frontotemporal dementia (FTD), 13 as progressive non-fluent aphasia (PNFA), 21 as CBD-like, 33 as PSP-like, and 13 with frontotemporal dementia with coexisting motor neuron disease (FTD-MND). The authors were unable to classify nine cases. All cases of FTD-MND were tau-negative and had pathologic evidence of motor neuron degeneration. All cases classified as PSP-like or CBD-like had tau-positive pathology. Of the 13 cases with PNFA, PSP and CBD accounted for almost 70% of the cases, while FTD was almost equally divided between tau-positive and tau-negative diseases. <b>Conclusion: </b> Frontotemporal lobar degeneration, corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP) have overlapping clinical features. The prediction of tau-positive pathology from a CBD or PSP-like presentation is good, while the frontotemporal dementia (FTD)-motor neuron disease syndrome almost certainly predicts motor neuron degeneration. Surprisingly, PSP and CBD accounted for most cases classified as progressive non-fluent aphasia. Frontal variant FTD is an unpredictable disease in terms of its biochemistry.
DOI: 10.1186/s40478-016-0315-6
2016
Cited 395 times
An autoradiographic evaluation of AV-1451 Tau PET in dementia
It is essential to determine the specificity of AV-1451 PET for tau in brain imaging by using pathological comparisons. We performed autoradiography in autopsy-confirmed Alzheimer disease and other neurodegenerative disorders to evaluate the specificity of AV-1451 binding for tau aggregates.Tissue samples were selected that had a variety of dementia-related neuropathologies including Alzheimer disease, primary age-related tauopathy, tangle predominant dementia, non-Alzheimer disease tauopathies, frontotemporal dementia, parkinsonism, Lewy body disease and multiple system atrophy (n = 38). Brain tissue sections were stained for tau, TAR DNA-binding protein-43, and α-synuclein and compared to AV-1451 autoradiography on adjacent sections.AV-1451 preferentially localized to neurofibrillary tangles, with less binding to areas enriched in neuritic pathology and less mature tau. The strength of AV-1451 binding with respect to tau isoforms in various neurodegenerative disorders was: 3R + 4R tau (e.g., AD) > 3R tau (e.g., Pick disease) or 4R tau. Only minimal binding of AV-1451 to TAR DNA-binding protein-43 positive regions was detected. No binding of AV-1451 to α-synuclein was detected. "Off-target" binding was seen in vessels, iron-associated regions, substantia nigra, calcifications in the choroid plexus, and leptomeningeal melanin.Reduced AV-1451 binding in neuritic pathology compared to neurofibrillary tangles suggests that the maturity of tau pathology may affect AV-1451 binding and suggests complexity in AV-1451 binding. Poor association of AV-1451 with tauopathies that have preferential accumulation of either 4R tau or 3R tau suggests limited clinical utility in detecting these pathologies. In contrast, for disorders associated with 3R + 4R tau, such as Alzheimer disease, AV-1451 binds tau avidly but does not completely reflect the early stage tau progression suggested by Braak neurofibrillary tangle staging. AV-1451 binding to TAR DNA-binding protein-43 or TAR DNA-binding protein-43 positive regions can be weakly positive. Clinical use of AV-1451 will require a familiarity with distinct types of "off-target" binding.
DOI: 10.1016/0197-4580(95)00013-5
1995
Cited 394 times
Correlations of synaptic and pathological markers with cognition of the elderly
It has been suggested that the physical basis for dementia is structural or functional loss of synapses. To confirm this finding, we performed an enzyme-linked immunoassay (ELISA) with a monoclonal antibody (EP10) to a synaptophysin-like protein in brain samples from 45 prospectively studied elderly subjects with an average age of 83.3 +/- 10.1 years. We compared the synaptic marker to immunoreactivity with a newly developed PHF antibody (TG3). The cases were selected on the basis of availability of frozen tissue, and included subjects ranging from clinically normal to end-stage dementia. As an initial assessment, we determined Pearson product moment correlations for two clinical measures--the Blessed test of information, concentration, and memory (BICM) and the Fuld object Memory Evaluation (FOME)--with ELISA data and with traditional pathologic markers. We found strong correlations (p < 0.01-0.001) for BICM with brain weight, neuronal loss in the basal nucleus of Meynert (nbM), counts of senile plaques (SP) in the neocortex and hippocampus, and neurofibrillary tangles (NFT) in all areas except the parahippocampal cortex. Except in the occipital lobe, where paired helical filament changes are relatively uncommon, TG3-immunoreactivity also correlated strongly with BICM. Weak correlations (p < 0.05) were found for BICM with EP10-immunoreactivity in only the temporal and parietal lobes. Only the pathologic variables showed any significant correlations with FOME. Because inclusion of normal subjects with few or no pathologic lesions could have been driving the strong correlations with pathologic markers, we limited the analysis to those subjects with dementia (BICM; 8). After making this correction, EP10-immunoreactivity in all cortical areas and the hippocampus correlated better (p < 0.05-0.01) with BICM but not FOME. The present univariate analysis suggests that synaptic markers may not be the best structural correlate of dementia and that markers indicative of cytoskeletal changes, e.g., SP, NFT and PHF protein accumulation, may be better correlates of dementia in the elderly.
DOI: 10.1007/s00401-015-1509-x
2015
Cited 390 times
Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy
Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.
DOI: 10.1212/wnl.62.2.181
2004
Cited 386 times
DLB fluctuations: Specific features that reliably differentiate DLB from AD and normal aging
<b><i>Objective:</i></b> To determine whether certain aspects of fluctuations reliably distinguish dementia with Lewy bodies (DLB) from Alzheimer’s disease (AD) and normal aging. <b><i>Methods:</i></b> Participants included 200 community-dwelling cognitively normal elderly persons, 70 DLB patients, and 70 AD patients with collateral informants. A 19-item questionnaire was administered to the informants that queried about symptoms of fluctuations and delirium. <b><i>Results:</i></b> Fluctuations occur infrequently in nondemented elderly persons aged 58 to 98 years. In contrast, four characteristics of fluctuations were found to significantly differentiate AD from DLB. These composite features include daytime drowsiness and lethargy, daytime sleep of 2 or more hours, staring into space for long periods, and episodes of disorganized speech. The presence of three or four features of this composite occurred in 63% of DLB patients compared with 12% of AD patients and 0.5% of normal elderly persons. Informant endorsement of three or four of these items yielded a positive predictive value of 83% for the clinical diagnosis of DLB against an alternate diagnosis of AD. Endorsement of fewer than three items had a negative predictive value of 70% for the absence of a clinical diagnosis of DLB in favor of AD. The authors present evidence of test-retest reliability, convergent validity, and empirical verification with a separate cross-validation sample. Fluctuations were not associated with any particular combination of hallucinations, parkinsonism, or REM sleep behavior disorder. <b><i>Conclusions:</i></b> Based on informant report, disturbed arousal and disorganized speech are specific aspects of fluctuations in dementia with Lewy bodies that reliably distinguish dementia with Lewy bodies from Alzheimer’s disease and normal aging.
DOI: 10.1007/s00401-011-0839-6
2011
Cited 384 times
Neuropathological background of phenotypical variability in frontotemporal dementia
Frontotemporal lobar degeneration (FTLD) is the umbrella term encompassing a heterogeneous group of pathological disorders. With recent discoveries, the FTLDs have been show to classify nicely into three main groups based on the major protein deposited in the brain: FTLD-tau, FTLD-TDP and FTLD-FUS. These pathological groups, and their specific pathologies, underlie a number of well-defined clinical syndromes, including three frontotemporal dementia (FTD) variants [behavioral variant frontotemporal dementia (bvFTD), progressive non-fluent aphasia, and semantic dementia (SD)], progressive supranuclear palsy syndrome (PSPS) and corticobasal syndrome (CBS). Understanding the neuropathological background of the phenotypic variability in FTD, PSPS and CBS requires large clinicopathological studies. We review current knowledge on the relationship between the FTLD pathologies and clinical syndromes, and pool data from a number of large clinicopathological studies that collectively provide data on 544 cases. Strong relationships were identified as follows: FTD with motor neuron disease and FTLD-TDP; SD and FTLD-TDP; PSPS and FTLD-tau; and CBS and FTLD-tau. However, the relationship between some of these clinical diagnoses and specific pathologies is not so clear cut. In addition, the clinical diagnosis of bvFTD does not have a strong relationship to any FTLD subtype or specific pathology and therefore remains a diagnostic challenge. Some evidence suggests improved clinicopathological association of bvFTD by further refining clinical characteristics. Unlike FTLD-tau and FTLD-TDP, FTLD-FUS has been less well characterized, with only 69 cases reported. However, there appears to be some associations between clinical phenotypes and FTLD-FUS pathologies. Clinical diagnosis is therefore promising in predicting molecular pathology.
DOI: 10.1007/s00401-008-0460-5
2008
Cited 381 times
Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations
Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration : consensus recommendations
DOI: 10.1212/wnl.56.12.1702
2001
Cited 381 times
Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype
To analyze the association of polymorphisms in the tau gene with pathologically confirmed corticobasal degeneration (CBD).The authors previously described an extended tau haplotype (H1) that covers the human tau gene and is associated with the development of progressive supranuclear palsy (PSP). The authors now extend this analysis to CBD, a neurodegenerative condition with clinical and neuropathologic similarities to PSP. Like PSP, CBD is associated with accumulation of aggregates containing the 4-repeat isoforms of tau. Because of difficulty in diagnosis of CBD, the authors only analyzed cases with pathologically confirmed CBD.The authors collected 57 unrelated, neuropathologically confirmed cases of CBD. Tau sequencing in these cases failed to show the presence of pathogenic mutations. Polymorphisms that spanned the tau gene were analyzed in all CBD cases and controls.Analyzing tau polymorphisms in CBD cases showed that the frequency of H1 and H1/H1 was significantly increased when analyzing all cases and when separating by country of origin. H1 frequency in all CBD cases was 0.921, compared with a control frequency of 0.766 (X(2) = 9.1, p = 0.00255 [1df], OR 3.56 [8.43 > CI 95% > 1.53]). The H1/H1 frequency was also significantly higher at 0.842 compared with 0.596 in age-matched controls (X(2) = 17.42, p = 0.00016, 2df), OR 3.61 [7.05 > CI 95% > 1.85]).The CBD tau association described here suggests that PSP and CBD share a similar cause, although the pathogenic mechanism behind the two diseases leads to a different clinical and pathologic phenotype.
DOI: 10.1212/wnl.53.4.795
1999
Cited 377 times
Pathologic heterogeneity in clinically diagnosed corticobasal degeneration
Early reports suggested that corticobasal degeneration (CBD) is a distinct clinicopathologic entity. Because patients have had a fairly consistent constellation of clinical and laboratory findings, many have proposed that the pathologic diagnosis can be surmised with confidence during life.To analyze the pathologic findings in a large series of cases with clinically diagnosed CBD.Using the medical research linkage system of the Mayo Clinic for the period January 1990 to December 1997, we identified cases diagnosed during life with CBD who subsequently underwent autopsy. All patients had progressive asymmetric rigidity and apraxia (except one with rigidity but no apraxia) with other findings, suggesting additional cortical and basal ganglionic dysfunction. All cases underwent standardized neuropathologic examination with the distribution and severity of the pathologic changes determined for each case and the pathologic diagnoses based on currently accepted criteria.Thirteen cases were identified. The pathologic diagnoses were CBD in seven, AD in two, and one each for progressive supranuclear palsy, Pick's disease, nonspecific degenerative changes, and Creutzfeldt-Jakob disease. Two cases had negligible basal ganglia and nigral degeneration despite previously having obvious extrapyramidal signs. However, all patients had focal or asymmetric cortical atrophy with coexisting neuronal loss and gliosis with or without status spongiosis, which was maximal in the parietal and frontal cortical regions.The constellation of clinical features considered characteristic of CBD is associated with heterogeneous pathologies. Furthermore, this syndrome can occur in the absence of basal ganglia and nigral degeneration. The one invariable pathologic abnormality in patients with this syndrome, however, is asymmetric parietofrontal cortical degeneration. At present, accurate diagnosis of CBD requires tissue examination.
DOI: 10.1002/ana.410410222
1997
Cited 376 times
Genetic evidence for the involvement of τ in progressive supranuclear palsy
A dinucleotide repeat polymorphism in a tau intron was identified and used in a case-control study to analyze the genetic association of tau with several neurodegenerative diseases with tau pathology. Subjects with the homozygous tau AO alleles were excessively represented in the progressive supranuclear palsy (PSP) group, compared with the age-matched healthy control group. Consequently, this allele is more frequently found in PSP than in a group of healthy subjects. This trend was not found in Alzheimer's disease or parkinsonism-dementia complex of Guam, both of which are accompanied by major tau pathology. The result suggests a possible involvement of tau in the pathogenesis of PSP.
DOI: 10.1016/j.parkreldis.2017.07.033
2018
Cited 375 times
Neuropathology of Parkinson disease
Introduction Parkinson's disease (PD) is characterized by bradykinesia, rigidity, postural instability and tremor. Several pathologic processes can produce this syndrome, but neurodegeneration accompanied by neuronal inclusions composed of α-synuclein (Lewy bodies) is considered the typical pathologic correlate of PD. Methods The neuropathologic features of PD are reviewed based upon personal experience and review of the literature. Molecular pathology of PD is summarized from cell biological and animal studies. Results The pathologic feature that correlates with signs and symptoms of PD is neuronal loss in the substantia nigra with dopaminergic denervation of the striatum. Neuronal degeneration in the substantia nigra preferentially affects the ventrolateral cell group that projects to posterolateral putamen and is accompanied by formation of Lewy bodies composed of aggregated α-synuclein. Some patients with PD are found at autopsy to have other pathologic processes, such as multiple system atrophy, progressive supranuclear palsy and cerebrovascular disease (vascular Parkinsonism). The peripheral autonomic nervous system is also affected. The triggering event in PD is unknown, but recent studies suggest a role for loss of nuclear membrane integrity. Once α-synuclein aggregates forms, evidence supports cell-to-cell propagation. Conclusion PD is a multisystem synucleinopathy caused by poorly characterized genetic and environmental factors that produces degeneration in selectively vulnerable neuronal populations.
DOI: 10.1001/archneur.63.5.674
2006
Cited 370 times
Neuropathologic Outcome of Mild Cognitive Impairment Following Progression to Clinical Dementia
The pathologic outcome of patients diagnosed with mild cognitive impairment (MCI) following progression to dementia is poorly understood.To determine the pathologic substrates of dementia in cases with prior diagnosis of amnestic MCI.Community-based cohort.Thirty-four subjects followed up prospectively as part of a community-based study who were diagnosed with amnestic MCI, progressed to clinical dementia, and underwent subsequent postmortem brain analysis.Neuropathologic analyses resulted in assignment of a primary pathologic diagnosis and included staging of Alzheimer pathologic abnormalities and identification of contributing vascular disease, Lewy bodies, and argyrophilic grains.Although the majority of subjects progressed both clinically and pathologically to Alzheimer disease (AD), 10 (29%) of them developed non-AD primary pathologic abnormalities. All of the cases were found to have sufficient pathologic abnormalities in mesial temporal lobe structures to account for their amnestic symptoms regardless of the cause. Most subjects were found to have secondary contributing pathologic abnormalities in addition to primary pathologic diagnoses. No significant differences between subjects with and without neuropathologically proven AD were detected in demographic variables, apolipoprotein E genotype, or cognitive test measures at onset of MCI, onset of dementia, or last clinical evaluation.The neuropathologic outcome of amnestic MCI following progression to dementia is heterogeneous, and it includes AD at a high frequency. Complex neuropathologic findings including 2 or more distinct pathologic entities contributing to dementia may be common in community-based cohorts. Neither demographic variables nor cognitive measures had predictive value in determining which patients diagnosed with MCI will develop the neuropathologic features of AD.
DOI: 10.1097/00005072-199305000-00001
1993
Cited 370 times
Pathology and Biology of the Lewy Body
Journal Article Pathology and Biology of the Lewy Body Get access Michael S. Pollanen, Michael S. Pollanen Centre for Research in Neurodegenerative Diseases, Tanz Neuroscience Building, University of Toronto, Toronto, Ontario Search for other works by this author on: Oxford Academic PubMed Google Scholar Dennis W. Dickson, M.D., Dennis W. Dickson, M.D. Department of Pathology (Neuropathology) and The Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York Search for other works by this author on: Oxford Academic PubMed Google Scholar Catherine Bergeron, M.D. Catherine Bergeron, M.D. Centre for Research in Neurodegenerative Diseases, Tanz Neuroscience Building, University of Toronto, Toronto, Ontario Correspondence to: Dr. Catherine Bergeron, Centre for Research in Neurodegenerative Diseases, Tanz Neuroscience Building, Room 121, University of Toronto, 6 Queen's Park Cres, West Toronto, Ontario, Canada M5S 1A8. Search for other works by this author on: Oxford Academic PubMed Google Scholar Journal of Neuropathology & Experimental Neurology, Volume 52, Issue 3, May 1993, Pages 183–191, https://doi.org/10.1097/00005072-199305000-00001 Published: 01 May 1993
DOI: 10.1001/archneur.59.1.102
2002
Cited 365 times
Parkinson Disease Neuropathology
To investigate the neuropathologic substrate for dementia occurring late in Parkinson disease (PD).We identified 13 patients with a clinical diagnosis of PD who experienced dementia at least 4 years after parkinsonism onset (mean, 10.5 years) and subsequently underwent postmortem examination. Despite levodopa therapy, 9 patients later became severely impaired and nonambulatory, requiring total or near-total care; this included 4 patients treated with 1200 mg/d or more of levodopa (with carbidopa), which was consistent with loss of the levodopa response. These 13 patients were compared with 9 patients clinically diagnosed as having PD, but without dementia, who had undergone autopsies.Twelve of 13 PD patients with dementia had findings of diffuse or transitional Lewy body disease as the primary pathologic substrate for dementia; 1 had progressive supranuclear palsy. This pathology also apparently accounted for the levodopa refractory state. Among the 12 PD patients with dementia, mean and median Lewy body counts were increased nearly 10-fold in neocortex and limbic areas compared with PD patients without dementia (P< or =.002). Alzheimer pathology was modest. Only one patient met the criteria defined by the National Institute on Aging and the Reagan Institute Working Group on the Diagnostic Criteria for the Neuropathologic Assessment of Alzheimer's Disease for "intermediate probability of Alzheimer's disease." There were, however, significant correlations between neocortical Lewy body counts and senile plaques as well as neurofibrillary tangles. Senile plaque counts did not significantly correlate with tangle counts in any of the analyzed nuclei. Arteriolar disease may have contributed to the clinical picture in 2 patients.Diffuse or transitional Lewy body disease is the primary pathologic substrate for dementia developing later in PD. This same pathologic substrate seemed to account for end-stage, levodopa refractory parkinsonism. The occurrence of Alzheimer pathology was modest, but was highly correlated with Lewy body pathology, suggesting common origins or one triggering the other.
DOI: 10.1212/wnl.0000000000007654
2019
Cited 365 times
CNS small vessel disease
CNS small vessel disease (CSVD) causes 25% of strokes and contributes to 45% of dementia cases. Prevalence increases with age, affecting about 5% of people aged 50 years to almost 100% of people older than 90 years. Known causes and risk factors include age, hypertension, branch atheromatous disease, cerebral amyloid angiopathy, radiation exposure, immune-mediated vasculitides, certain infections, and several genetic diseases. CSVD can be asymptomatic; however, depending on location, lesions can cause mild cognitive dysfunction, dementia, mood disorders, motor and gait dysfunction, and urinary incontinence. CSVD is diagnosed on the basis of brain imaging biomarkers, including recent small subcortical infarcts, white matter hyperintensities, lacunes, cerebral microbleeds, enlarged perivascular spaces, and cerebral atrophy. Advanced imaging modalities can detect signs of disease even earlier than current standard imaging techniques. Diffusion tensor imaging can identify altered white matter connectivity, and blood oxygenation level-dependent imaging can identify decreased vascular reactivity. Pathogenesis is thought to begin with an etiologically specific insult, with or without genetic predisposition, which results in dysfunction of the neurovascular unit. Uncertainties regarding pathogenesis have delayed development of effective treatment. The most widely accepted approach to treatment is to intensively control well-established vascular risk factors, of which hypertension is the most important. With better understanding of pathogenesis, specific therapies may emerge. Early identification of pathologic characteristics with advanced imaging provides an opportunity to forestall progression before emergence of symptoms.
DOI: 10.1016/s1474-4422(12)70200-4
2012
Cited 364 times
Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study
Three subtypes of Alzheimer's disease (AD) have been pathologically defined on the basis of the distribution of neurofibrillary tangles: typical AD, hippocampal-sparing AD, and limbic-predominant AD. Compared with typical AD, hippocampal-sparing AD has more neurofibrillary tangles in the cortex and fewer in the hippocampus, whereas the opposite pattern is seen in limbic-predominant AD. We aimed to determine whether MRI patterns of atrophy differ between these subtypes and whether structural neuroimaging could be a useful predictor of pathological subtype at autopsy.We identified patients who had been followed up in the Mayo Clinic Alzheimer's Disease Research Center (Rochester, MN, USA) or in the Alzheimer's Disease Patient Registry (Rochester, MN, USA) between 1992 and 2005. To be eligible for inclusion, participants had to have had dementia, AD pathology at autopsy (Braak stage ≥IV and intermediate to high probability of AD), and an ante-mortem MRI. Cases were assigned to one of three pathological subtypes--hippocampal-sparing, limbic-predominant, and typical AD--on the basis of neurofibrillary tangle counts in hippocampus and cortex and ratio of hippocampal to cortical burden, without reference to neuronal loss. Voxel-based morphometry and atlas-based parcellation were used to compare patterns of grey matter loss between groups and with age-matched control individuals. Neuroimaging was obtained at the time of first presentation. To summarise pair-wise group differences, we report the area under the receiver operator characteristic curve (AUROC).Of 177 eligible patients, 125 (71%) were classified as having typical AD, 33 (19%) as having limbic-predominant AD, and 19 (11%) as having hippocampal-sparing AD. Most patients with typical (98 [78%]) and limbic-predominant AD (31 [94%]) initially presented with an amnestic syndrome, but fewer patients with hippocampal-sparing AD (eight [42%]) did. The most severe medial temporal atrophy was recorded in patients with limbic-predominant AD, followed by those with typical disease, and then those with hippocampal-sparing AD. Conversely, the most severe cortical atrophy was noted in patients with hippocampal-sparing AD, followed by those with typical disease, and then limbic-predominant AD. The ratio of hippocampal to cortical volumes allowed the best discrimination between subtypes (p<0·0001; three-way AUROC 0·52 [95% CI 0·47-0·52]; ratio of AUROC to chance classification 3·1 [2·8-3·1]). Patients with typical AD and non-amnesic initial presentation had a significantly higher ratio of hippocampal to cortical volumes (median 0·045 [IQR 0·035-0·056]) than did those with an amnesic presentation (0·041 [0·031-0·057]; p=0·001).Patterns of atrophy on MRI differ across the pathological subtypes of AD. MRI regional volumetric analysis can reliably track the distribution of neurofibrillary tangle pathology and can predict pathological subtype of AD at autopsy.US National Institutes of Health (National Institute on Aging).
DOI: 10.1073/pnas.1109434108
2011
Cited 363 times
A yeast functional screen predicts new candidate ALS disease genes
Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.
DOI: 10.1093/brain/aws001
2012
Cited 361 times
Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics
A major recent discovery was the identification of an expansion of a non-coding GGGGCC hexanucleotide repeat in the C9ORF72 gene in patients with frontotemporal dementia and amyotrophic lateral sclerosis. Mutations in two other genes are known to account for familial frontotemporal dementia: microtubule-associated protein tau and progranulin. Although imaging features have been previously reported in subjects with mutations in tau and progranulin, no imaging features have been published in C9ORF72. Furthermore, it remains unknown whether there are differences in atrophy patterns across these mutations, and whether regional differences could help differentiate C9ORF72 from the other two mutations at the single-subject level. We aimed to determine the regional pattern of brain atrophy associated with the C9ORF72 gene mutation, and to determine which regions best differentiate C9ORF72 from subjects with mutations in tau and progranulin, and from sporadic frontotemporal dementia. A total of 76 subjects, including 56 with a clinical diagnosis of behavioural variant frontotemporal dementia and a mutation in one of these genes (19 with C9ORF72 mutations, 25 with tau mutations and 12 with progranulin mutations) and 20 sporadic subjects with behavioural variant frontotemporal dementia (including 50% with amyotrophic lateral sclerosis), with magnetic resonance imaging were included in this study. Voxel-based morphometry was used to assess and compare patterns of grey matter atrophy. Atlas-based parcellation was performed utilizing the automated anatomical labelling atlas and Statistical Parametric Mapping software to compute volumes of 37 regions of interest. Hemispheric asymmetry was calculated. Penalized multinomial logistic regression was utilized to create a prediction model to discriminate among groups using regional volumes and asymmetry score. Principal component analysis assessed for variance within groups. C9ORF72 was associated with symmetric atrophy predominantly involving dorsolateral, medial and orbitofrontal lobes, with additional loss in anterior temporal lobes, parietal lobes, occipital lobes and cerebellum. In contrast, striking anteromedial temporal atrophy was associated with tau mutations and temporoparietal atrophy was associated with progranulin mutations. The sporadic group was associated with frontal and anterior temporal atrophy. A conservative penalized multinomial logistic regression model identified 14 variables that could accurately classify subjects, including frontal, temporal, parietal, occipital and cerebellum volume. The principal component analysis revealed similar degrees of heterogeneity within all disease groups. Patterns of atrophy therefore differed across subjects with C9ORF72, tau and progranulin mutations and sporadic frontotemporal dementia. Our analysis suggested that imaging has the potential to be useful to help differentiate C9ORF72 from these other groups at the single-subject level.
DOI: 10.1007/s00401-011-0852-9
2011
Cited 357 times
Neuropathology underlying clinical variability in patients with synucleinopathies
DOI: 10.1038/sdata.2016.89
2016
Cited 356 times
Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases
Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.
DOI: 10.1016/0165-5728(93)90229-r
1993
Cited 351 times
Induction of nitric oxide synthase activity in human astrocytes by interleukin-1β and interferon-γ
Nitric oxide (NO) is a short-lived, diffusible molecule that has a variety of biological activities including vasorelaxation, neurotransmission, and cytotoxicity. In the central nervous system, a constitutive form of nitric oxide synthase (NOS) has been localized in a subset of neurons and in endothelial cells. In addition, both constitutive and LPS-inducible NOS has been demonstrated in rat astrocytes and microglia in vitro. In this report, we present evidence for the production of NO, as measured by the production of nitrite, in highly enriched human fetal astrocyte cultures stimulated with IL-1 beta. The production of nitrite paralleled the induction of NADPH diaphorase enzyme activity in the perikarya of the majority of stimulated astrocytes. The IL-1 beta-induced nitrite production by astrocytes was markedly enhanced when cells were co-stimulated with IFN-gamma or TNF-alpha (IFN-gamma > TNF-alpha); LPS had no effect used as a single agent or in combination with other cytokines. NGMMA and NG-nitro-arginine, competitive inhibitors of NOS, diminished the accumulation of nitrite, but calmodulin antagonists (trifluoperazine, W-5 and W-7) had little or no inhibitory effect. Human fetal microglia, in contrast to astrocytes, failed to secrete significant amounts of nitrite in response to various stimuli. The results demonstrate the presence of an inducible form of NOS in human fetal astrocytes; human microglia, in turn, may control astrocyte NO production by providing IL-1 beta as an activating signal.
DOI: 10.1212/01.wnl.0000073619.94467.b0
2003
Cited 346 times
Synucleinopathy pathology and REM sleep behavior disorder plus dementia or parkinsonism
To determine if synucleinopathy pathology is related to REM sleep behavior disorder (RBD) plus dementia or parkinsonism.The clinical and neuropathologic findings were analyzed on all autopsied cases evaluated at Mayo Clinic Rochester from January 1990 to April 2002 who were diagnosed with RBD and a neurodegenerative disorder. Ubiquitin and/or alpha-synuclein immunocytochemistry was used in all cases. The clinical and neuropathologic diagnoses were based on published criteria.Fifteen cases were identified (14 men). All had clear histories of dream enactment behavior, and 10 had RBD confirmed by polysomnography. RBD preceded dementia or parkinsonism in 10 (66.7%) patients by a median of 10 (range 2 to 29) years. The clinical diagnoses included dementia with Lewy bodies (DLB) (n = 6); multiple-system atrophy (MSA) (n = 2); combined DLB, AD, and vascular dementia (n = 1); dementia (n = 1); dementia with parkinsonism (n = 1); PD (n = 1); PD with dementia (n = 1); dementia/parkinsonism/motor neuron disease (n = 1); and AD/Binswanger's disease (n = 1). The neuropathologic diagnoses were Lewy body disease (LBD) in 12 (neocortical in 11 and limbic in 1) and MSA in 3. Three also had argyrophilic grain pathology. In the LBD cases, concomitant AD pathology was present in six (one also with Binswanger's pathology, and one also with multiple subcortical infarcts).In the setting of degenerative dementia or parkinsonism, RBD often reflects an underlying synucleinopathy.
DOI: 10.1523/jneurosci.3421-07.2007
2007
Cited 344 times
Progranulin Mediates Caspase-Dependent Cleavage of TAR DNA Binding Protein-43
TAR DNA binding protein-43 (TDP-43) is the pathologic substrate of neuronal and glial inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTDL-U) and in amyotrophic lateral sclerosis (ALS). Mutations in the progranulin gene ( PGRN ) have been shown to cause familial FTLD-U. The relationship between progranulin and TDP-43 and their respective roles in neurodegeneration is unknown. We report that progranulin mediates proteolytic cleavage of TDP-43 to generate ∼35 and ∼25 kDa species. Suppression of PGRN expression with small interfering RNA leads to caspase-dependent accumulation of TDP-43 fragments that can be inhibited with caspase inhibitor treatment. Cells treated with staurosporine also induced caspase-dependent cleavage and redistribution of TDP-43 from its nuclear localization to cytoplasm. Altered cleavage and redistribution of TDP-43 in cell culture models are similar to findings in FTLD-U and ALS. The results suggest that abnormal metabolism of TDP-43 mediated by progranulin may play a pivotal role in neurodegeneration.
DOI: 10.1126/science.aaa9344
2015
Cited 342 times
<i>C9ORF72</i> repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits
The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with "c9FTD/ALS" are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.
DOI: 10.1093/brain/awn352
2009
Cited 341 times
Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members
Mutations in the progranulin gene (GRN) are an important cause of frontotemporal lobar degeneration (FTLD) with ubiquitin and TAR DNA-binding protein 43 (TDP43)-positive pathology. The clinical presentation associated with GRN mutations is heterogeneous and may include clinical probable Alzheimer's disease. All GRN mutations identified thus far cause disease through a uniform disease mechanism, i.e. the loss of functional GRN or haploinsufficiency. To determine if expression of GRN in plasma could predict GRN mutation status and could be used as a biological marker, we optimized a GRN ELISA and studied plasma samples of a consecutive clinical FTLD series of 219 patients, 70 control individuals, 72 early-onset probable Alzheimer's disease patients and nine symptomatic and 18 asymptomatic relatives of GRN mutation families. All FTLD patients with GRN loss-of-function mutations showed significantly reduced levels of GRN in plasma to about one third of the levels observed in non-GRN carriers and control individuals (P < 0.001). No overlap in distributions of GRN levels was observed between the eight GRN loss-of-function mutation carriers (range: 53-94 ng/ml) and 191 non-GRN mutation carriers (range: 115-386 ng/ml). Similar low levels of GRN were identified in asymptomatic GRN mutation carriers. Importantly, ELISA analyses also identified one probable Alzheimer's disease patient (1.4%) carrying a loss-of-function mutation in GRN. Biochemical analyses further showed that the GRN ELISA only detects full-length GRN, no intermediate granulin fragments. This study demonstrates that using a GRN ELISA in plasma, pathogenic GRN mutations can be accurately detected in symptomatic and asymptomatic carriers. The approximately 75% reduction in full-length GRN, suggests an unbalanced GRN metabolism in loss-of-function mutation carriers whereby more GRN is processed into granulins. We propose that plasma GRN levels could be used as a reliable and inexpensive tool to identify all GRN mutation carriers in early-onset dementia populations and asymptomatic at-risk individuals.
DOI: 10.1007/s00401-014-1269-z
2014
Cited 334 times
TDP-43 is a key player in the clinical features associated with Alzheimer’s disease
The aim of this study was to determine whether the TAR DNA-binding protein of 43 kDa (TDP-43) has any independent effect on the clinical and neuroimaging features typically ascribed to Alzheimer's disease (AD) pathology, and whether TDP-43 pathology could help shed light on the phenomenon of resilient cognition in AD. Three-hundred and forty-two subjects pathologically diagnosed with AD were screened for the presence, burden and distribution of TDP-43. All had been classified as cognitively impaired or normal, prior to death. Atlas-based parcellation and voxel-based morphometry were used to assess regional atrophy on MRI. Regression models controlling for age at death, apolipoprotein ε4 and other AD-related pathologies were utilized to explore associations between TDP-43 and cognition or brain atrophy, stratified by Braak stage. In addition, we determined whether the effects of TDP-43 were mediated by hippocampal sclerosis. One-hundred and ninety-five (57%) cases were TDP-positive. After accounting for age, apolipoprotein ε4 and other pathologies, TDP-43 had a strong effect on cognition, memory loss and medial temporal atrophy in AD. These effects were not mediated by hippocampal sclerosis. TDP-positive subjects were 10× more likely to be cognitively impaired at death compared to TDP-negative subjects. Greater cognitive impairment and medial temporal atrophy were associated with greater TDP-43 burden and more extensive TDP-43 distribution. TDP-43 is an important factor in the manifestation of the clinico-imaging features of AD. TDP-43 also appears to be able to overpower what has been termed resilient brain aging. TDP-43 therefore should be considered a potential therapeutic target for the treatment of AD.