ϟ

D. Piccolo

Here are all the papers by D. Piccolo that you can download and read on OA.mg.
D. Piccolo’s last known institution is . Download D. Piccolo PDFs here.

Claim this Profile →
DOI: 10.1088/1748-0221/13/03/p03012
2018
Cited 52 times
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.
DOI: 10.3390/instruments6010006
2022
Cited 20 times
The CYGNO Experiment
The search for a novel technology able to detect and reconstruct nuclear and electron recoil events with the energy of a few keV has become more and more important now that large regions of high-mass dark matter (DM) candidates have been excluded. Moreover, a detector sensitive to incoming particle direction will be crucial in the case of DM discovery to open the possibility of studying its properties. Gaseous time projection chambers (TPC) with optical readout are very promising detectors combining the detailed event information provided by the TPC technique with the high sensitivity and granularity of latest-generation scientific light sensors. The CYGNO experiment (a CYGNus module with Optical readout) aims to exploit the optical readout approach of multiple-GEM structures in large volume TPCs for the study of rare events as interactions of low-mass DM or solar neutrinos. The combined use of high-granularity sCMOS cameras and fast light sensors allows the reconstruction of the 3D direction of the tracks, offering good energy resolution and very high sensitivity in the few keV energy range, together with a very good particle identification useful for distinguishing nuclear recoils from electronic recoils. This experiment is part of the CYGNUS proto-collaboration, which aims at constructing a network of underground observatories for directional DM search. A one cubic meter demonstrator is expected to be built in 2022/23 aiming at a larger scale apparatus (30 m3–100 m3) at a later stage.
DOI: 10.1016/j.nima.2012.10.058
2013
Cited 32 times
GEM based detector for future upgrade of the CMS forward muon system
In view of an upgrade of the CMS experiment, the GEM for CMS collaboration is performing feasibility studies on employing Triple-GEM detectors for the high-η region (1.6–2.4) of the CMS endcaps. A detailed review of the development and characterization of the CMS full-size prototype baseline detector will be presented. GEMs have excellent spatial and time resolution, high rate capability and radiation hardness, they are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in the high-η region. The GEM for CMS collaboration has studied the performance of small and full-size prototype detectors during several test beam campaigns in order to validate new technologies and techniques in view of a mass production for CMS experiment. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown from both small and large prototypes.
DOI: 10.1088/1748-0221/15/07/c07036
2020
Cited 22 times
CYGNO: a gaseous TPC with optical readout for dark matter directional search
The CYGNO project has the goal to use a gaseous TPC with optical readout to detect dark matter and solar neutrinos with low energy threshold and directionality. The CYGNO demonstrator will consist of 1 m 3 volume filled with He:CF 4 gas mixture at atmospheric pressure. Optical readout with high granularity CMOS sensors, combined with fast light detectors, will provide a detailed reconstruction of the event topology. This will allow to discriminate the nuclear recoil signal from the background, mainly represented by low energy electron recoils induced by radioactivity. Thanks to the high reconstruction efficiency, CYGNO will be sensitive to low mass dark matter, and will have the potential to overcome the neutrino floor, that ultimately limits non-directional dark matter searches.
DOI: 10.1016/0168-9002(92)90277-b
1992
Cited 46 times
A high resolution muon detector
The design and operation of precision drift chambers with multisampling as well as the concepts and methods for reaching an extraordinary degree of precision in mechanics and calibration are described. Specific instruments were developed for this purpose. The concept of reproducible positioning and the implementation to 30 μm accuracy, showing stability over three years, is given. Calibration and analysis with UV-laser and cosmic test measurements are outlined with the critical results. The experience of calibration and reliability of the large system in an actual L3 running experiment is analyzed. The resolution under “battle conditions” at LEP resulted in Δpp = (2.50±0.04)% at 45.6 GeV and will be presented in detail. The concept is well suited for future TeV energies.
DOI: 10.1016/j.nima.2005.06.074
2005
Cited 45 times
Cosmic ray tests of double-gap resistive plate chambers for the CMS experiment
The CMS Barrel resistive plate chambers quality tests are performed at three different sites (Bari, Pavia and Sofia), where equivalent software and hardware tools are used. Data from the first 210 detectors are available for a comprehensive analysis. The paper describes the general experimental set-up, the test procedure and the cosmic muon test results. The muon trajectory reconstruction algorithm, used for precise studies, is presented. The criteria to accept or reject a detector are also given. The CMS final-design chambers show an average efficiency greater than 95%.
DOI: 10.1088/1748-0221/11/08/p08019
2016
Cited 24 times
Eco-friendly gas mixtures for Resistive Plate Chambers based on tetrafluoropropene and Helium
Due to the recent restrictions deriving from the application of the Kyoto protocol, the main components of the gas mixtures presently used in the Resistive Plate Chambers systems of the LHC experiments will be most probably phased out of production in the coming years. Identifying possible replacements with the adequate characteristics requires an intense R&D, which was recently started, also in collaborations across the various experiments. Possible candidates have been proposed and are thoroughly investigated. Some tests on one of the most promising candidate - HFO-1234ze, an allotropic form of tetrafluoropropane- have already been reported. Here an innovative approach, based on the use of Helium, to solve the problems related to the too elevate operating voltage of HFO-1234ze based gas mixtures, is discussed and the relative first results are shown.
DOI: 10.1088/1748-0221/15/12/t12003
2020
Cited 18 times
A density-based clustering algorithm for the CYGNO data analysis
Time Projection Chambers (TPCs) working in combination with Gas Electron Multipliers (GEMs) produce a very sensitive detector capable of observing low energy events. This is achieved by capturing photons generated during the GEM electron multiplication process by means of a high-resolution camera. The CYGNO experiment has recently developed a TPC Triple GEM detector coupled to a low noise and high spatial resolution CMOS sensor. For the image analysis, an algorithm based on an adapted version of the well-known DBSCAN was implemented, called iDBSCAN. In this paper a description of the iDBSCAN algorithm is given, including test and validation of its parameters, and a comparison with DBSCAN itself and a widely used algorithm known as Nearest Neighbor Clustering (NNC). The results show that the adapted version of DBSCAN is capable of providing full signal detection efficiency and very good energy resolution while improving the detector background rejection.
DOI: 10.1016/j.nima.2022.167584
2023
Cited 3 times
50 litres TPC with sCMOS-based optical readout for the CYGNO project
The CYGNO project aims at realizing a one cubic meter gaseous Time Projection Chamber (TPC) equipped with Scientific CMOS (sCMOS) commercial cameras to optically readout Gas Electron Multiplier (GEM) to be operated at the underground of Gran Sasso National Laboratory (LNGS). The purpose of the project is to study the technology needed for a large size gaseous TPC (30–100 m3) operated at atmospheric pressure for the directional search of low mass O(GeV) dark matter and low energy (eg solar) neutrinos astronomy. The roadmap of the project foresees the underground operation of a 50 litres TPC prototype, called LIME, the largest TPC realized with this technology, fully equipped with copper and water shielding. LIME is equivalent to about a 1/20 of the CYGNO demonstrator and aims to validate: The construction materials, the Monte Carlo simulations, the data reconstruction and the particle identification performances at low energy threshold. LIME is under installation at the LNGS and it is supposed to start data taking at the beginning of 2022. The detector description and installation will be presented, as well as the overground performance and limitations that require underground characterization.
DOI: 10.1016/j.nuclphysbps.2006.07.002
2006
Cited 37 times
HF production in CMS-Resistive Plate Chambers
The formation of highly reactive compounds in the gas mixture during Resistive Plate Chambers (RPCs) operation at the CERN Gamma Irradiation Facility (GIF) is studied. Results from two different types of chambers are discussed: 50 × 50 cm2 RPC prototypes and two final CMS-RB1 chambers. The RB1 detectors were also connected to a closed loop gas system. Gas composition, possible additional impurities as well as fluoride ions have been monitored in different gamma irradiation conditions both in open and closed loop mode. The chemical composition of the RPC electrode surface has also been analyzed using an electron microscope equipped with an EDS/X-ray.
DOI: 10.1088/1748-0221/14/07/p07011
2019
Cited 19 times
Performance of optically readout GEM-based TPC with a <sup>55</sup>Fe source
Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Electron Multipliers (GEMs) amplification stages has shown to provide very interesting performances for high energy particle tracking. Proposed applications for low-energy and rare event studies, such as Dark Matter search, ask for demanding performance in the keV energy range. The performance of such a readout was studied in details as a function of the electric field configuration and GEM gain by using a 55Fe source within a 7 litre sensitive volume detector developed as a part of the R&D for the CYGNUS project. Results reported in this paper show that the low noise level of the sensor allows to operate with a 2 keV threshold while keeping a rate of fake-events lesser than 10 per year. In this configuration, a detection efficiency well above 95% along with an energy resolution (σ) of 18% is obtained for the 5.9 keV photons demonstrating the very promising capabilities of this technique.
DOI: 10.1088/1361-6501/abbd12
2020
Cited 15 times
Identification of low energy nuclear recoils in a gas time projection chamber with optical readout
The search for a novel technology able to detect and reconstruct nuclear recoil events in the keV energy range has become more and more important as long as vast regions of high mass WIMP-like Dark Matter candidate have been excluded. Gaseous Time Projection Chambers (TPC) with optical readout are very promising candidate combining the complete event information provided by the TPC technique to the high sensitivity and granularity of last generation scientific light sensors. A TPC with an amplification at the anode obtained with Gas Electron Multipliers (GEM) was tested at the Laboratori Nazionali di Frascati. Photons and neutrons from radioactive sources were employed to induce recoiling nuclei and electrons with kinetic energy in the range [1-100] keV. A He-CF4 (60/40) gas mixture was used at atmospheric pressure and the light produced during the multiplication in the GEM channels was acquired by a high position resolution and low noise scientific CMOS camera and a photomultiplier. A multi-stage pattern recognition algorithm based on an advanced clustering technique is presented here. A number of cluster shape observables are used to identify nuclear recoils induced by neutrons originated from a AmBe source against X-ray 55Fe photo-electrons. An efficiency of 18% to detect nuclear recoils with an energy of about 6 keV is reached obtaining at the same time a 96% 55Fe photo-electrons suppression. This makes this optically readout gas TPC a very promising candidate for future investigations of ultra-rare events as directional direct Dark Matter searches.
DOI: 10.1109/tim.2011.2175821
2012
Cited 22 times
Modified POF Sensor for Gaseous Hydrogen Fluoride Monitoring in the Presence of Ionizing Radiations
This paper describes the development of a sensor designed to detect low concentrations of hydrogen fluoride (HF) in gas mixtures. The sensor employs a plastic optical fiber (POF) covered with a thin layer of glass- like material. HF attacks the glass and alters the fiber transmission capability so that the detection simply requires a LED and a photodiode. The coated POF is obtained by means of low-pressure plasma-enhanced chemical vapor deposition that allows the glass-like film to be deposited at low temperature without damaging the fiber core. The developed sensor will be installed in the recirculation gas system of the resistive plate chamber muon detector of the Compact Muon Solenoid experiment at the Large Hadron Collider accelerator of the European Organization for Nuclear Research (CERN).
DOI: 10.1088/1748-0221/9/10/c10036
2014
Cited 18 times
Upgrade of the CMS muon system with triple-GEM detectors
The CMS collaboration considers upgrading the muon forward region which is particularly affected by the high-luminosity conditions at the LHC. The proposal involves Gas Electron Multiplier (GEM) chambers, which are able to handle the extreme particle rates expected in this region along with a high spatial resolution. This allows to combine tracking and triggering capabilities, which will improve the CMS muon High Level Trigger, the muon identification and the track reconstruction. Intense R&D has been going on since 2009 and it has lead to the development of several GEM prototypes and associated detector electronics. These GEM prototypes have been subjected to extensive tests in the laboratory and in test beams at the CERN Super Proton Synchrotron (SPS). This contribution will review the status of the CMS upgrade project with GEMs and its impact on the CMS performance.
DOI: 10.1140/epjc/s10052-024-12545-8
2024
High-rate tests on resistive plate chambers operated with eco-friendly gas mixtures
Results obtained by the RPC ECOgas@GIF++ Collaboration, using Resistive Plate Chambers operated with new, eco-friendly gas mixtures, based on Tetrafluoropropene and carbon dioxide, are shown and discussed in this paper. Tests aimed to assess the performance of this kind of detectors in high-irradiation conditions, analogous to the ones foreseen for the coming years at the Large Hadron Collider experiments, were performed, and demonstrate a performance basically similar to the one obtained with the gas mixtures currently in use, based on Tetrafluoroethane, which is being progressively phased out for its possible contribution to the greenhouse effect. Long term aging tests are also being carried out, with the goal to demonstrate the possibility of using these eco-friendly gas mixtures during the whole High Luminosity phase of the Large Hadron Collider.
DOI: 10.22323/1.441.0020
2024
The CYGNO project for directional Dark Matter searches
The CYGNO project aims to develop a high-precision optical Time Projection Chamber (TPC) for directional Dark Matter search and solar neutrino spettroscopy, to be hosted at Laboratori Nazionali del Gran Sasso (LNGS). The distinctive feature of CYGNO include the exploitation of scientific CMOS cameras and photomultiplier tubes coupled to a Gas Electron Multiplier for amplification within helium-fluorine-based gas mixture at atmospheric pressure. The primary objective of this project is to achieve three-dimentional tracking with head-tail capability and to enhance background rejection down to the keV energy range. This enhancement will significantly improve sensitivity to low Weakly Interacting Massive Particle masses for both Spin-Independent and Spin-Dependent coupling. We provide insights into the commissioning and underground operation of our 50-liter prototype, known as LIME, which represents the largest prototype developed by our collaboration to date. We showcase its capability to measure and identify low-energy nuclear and electron recoils. Additionally, we outline the design and prospects for the development of a funded $\mathcal{O}(1\,\rm{m}^3)$ demonstrator, set to be housed in Hall F of LNGS. Furthermore, we present the physics potential that a future $\mathcal{O}(30\, \rm{m}^3)$ experiment could bring to the field. Lastly, we discuss the results from our collaboration's research and development efforts aimed at maximizing the potential of CYGNO. This includes the recent achievement of negative ion drift operation at atmospheric pressure with optical readout, which was accomplished in synergy with the ERC Consolidator Grant project INITIUM.
2024
In-beam performance of a Resistive Plate Chamber operated with eco-friendly gas mixtures
2024
Exploring Eco-Friendly Gas Mixtures for Resistive Plate Chambers: A Comprehensive Study on Performance and Aging
DOI: 10.48550/arxiv.2404.03677
2024
Status of the production of GEM chambers for the CMS experiment at Large Hadron Collider
The High Luminosity LHC phase includes an upgrade to the muon stations for the CMS Experiment. CMS trigger and muon identification performance will be crucial, and it is, therefore, necessary to install new GEM stations to extend acceptance in the high-{\eta} region. An explanation of the quality control test and an update on the status of production will be provided.
DOI: 10.1016/j.nima.2024.169400
2024
CMS iRPC FEB development and validation
In view of the High Luminosity upgrade of the CERN LHC, the forward CMS Muon spectrometer will be extended with two new stations of improved Resistive Plate Chambers (iRPC) covering the pseudorapidity range from 1.8 to 2.4. Compared to the present RPC system, the gap thickness is reduced to lower the avalanche charge, and an innovative 2D strip readout geometry is proposed. These improvements will allow iRPC detector to cope with higher background rates. A new Front-End-Board (FEB) is designed to readout iRPC signals with a threshold as low as 30 fC and an integrated Time Digital Converter with a resolution of 30 ps. In addition, the communication bandwidth is significantly increased by using optical fibers. The history, final design, certification, and calibration of this FEB are presented.
DOI: 10.1051/epjconf/202429507013
2024
Data handling of CYGNO experiment using INFN-Cloud solution
The INFN Cloud project was launched at the beginning of 2020, aiming to build a distributed Cloud infrastructure and provide advanced services for the INFN scientific communities. A Platform as a Service (PaaS) was created inside INFN Cloud that allows the experiments to develop and access resources as a Software as a Service (SaaS), and CYGNO is the betatester of this system. The aim of the CYGNO experiment is to realize a large gaseous Time Projection Chamber based on the optical readout of the photons produced in the avalanche multiplication of ionization electrons in a GEM stack. To this extent, CYGNO exploits the progress in commercial scientific Active Pixel Sensors based on Scientific CMOS for Dark Matter search and Solar Neutrino studies. CYGNO, like many other astroparticle experiments, requires a computing model to acquire, store, simulate and analyze data typically far from High Energy Physics (HEP) experiments. Indeed, astroparticle experiments are typically characterized by being less demanding of computing resources with respect to HEP ones but have to deal with unique and unrepeatable data, sometimes collected in extreme conditions, with extensive use of templates and montecarlo, and are often re-calibrated and reconstructed many times for a given data set. Moreover, the varieties and the scale of computing models and requirements are extremely large. In this scenario, the Cloud infrastructure with standardized and optimized services offered to the scientific community could be a useful solution able to match the requirements of many small/medium size experiments. In this work, we will present the CYGNO computing model based on the INFN cloud infrastructure where the experiment software, easily extendible to similar experiments to similar applications on other similar experiments, provides tools as a service to store, archive, analyze, and simulate data.
DOI: 10.1016/j.nima.2008.12.175
2009
Cited 22 times
The CMS RPC gas gain monitoring system: An overview and preliminary results
The status of the CMS RPC Gas Gain Monitoring (GGM) system developed at the Frascati Laboratory of INFN (Istituto Nazionale di Fisica Nucleare) is reported on. The GGM system is a cosmic ray telescope based on small RPC detectors operated with the same gas mixture used by the CMS RPC system. The GGM gain and efficiency are continuously monitored on-line, thus providing a fast and accurate determination of any shift in working point conditions. The construction details and the first result of GGM commissioning are described.
DOI: 10.1109/nssmic.2010.5874006
2010
Cited 22 times
Characterization of GEM detectors for application in the CMS muon detection system
The muon detection system of the Compact Muon Solenoid experiment at the CERN Large Hadron Collider is based on different technologies for muon tracking and triggering. In particular, the muon system in the endcap disks of the detector consists of Resistive Plate Chambers for triggering and Cathode Strip Chambers for tracking. At present, the endcap muon system is only partially instrumented with the very forward detector region remaining uncovered. In view of a possible future extension of the muon endcap system, we report on a feasibility study on the use of Micro-Pattern Gas Detectors, in particular Gas Electron Multipliers, for both muon triggering and tracking. Results on the construction and characterization of small triple-Gas Electron Multiplier prototype detectors are presented.
DOI: 10.7717/peerj.5165
2018
Cited 15 times
Differences in electromyographic activity of biceps brachii and brachioradialis while performing three variants of curl
Background Dumbbell curl (DC) and barbell curl in its two variants, straight (BC) or undulated bar (EZ) are typical exercises to train the elbow flexors. The aim of the study was to verify if the execution of these three variants could induce a selective electromyographic (EMG) activity of the biceps brachii (BB) and brachioradialis (BR). Methods Twelve participants performed one set of ten repetitions at 65% of their 1-RM for each variant of curl. Pre-gelled electrodes were applied with an inter-electrode distance of 24 mm on BB and BR. An electrical goniometer was synchronously recorded with EMG signals to determine the concentric and eccentric phases of each variant of curl. Results We detected higher activation profile of both BB ( P &lt; 0.05) and BR ( P &lt; 0.01) during the EZ compared to the DC. Higher levels of activation was found during the concentric phase for only the BR performed with an EZ compared to DC ( P &lt; 0.001) and performing BC compared to DC ( P &lt; 0.05). The eccentric phase showed a higher activation of the BB muscle in EZ compared to DC ( P &lt; 0.01) and in BC compared to DC ( P &lt; 0.05). The BR muscle showed a higher activation performing EZ compared to DC ( P &lt; 0.01). Discussion The EZ variant may be preferred over the DC variant as it enhances BB and BR EMG activity during the whole range of motion and only in the eccentric phase. The small difference between BC and EZ variants of the BB and BR EMG activity makes the choice between these two exercises a matter of subjective comfort.
DOI: 10.1088/1748-0221/15/10/p10001
2020
Cited 12 times
Stability and detection performance of a GEM-based Optical Readout TPC with He/CF<sub>4</sub> gas mixtures
The performance and long term stability of an optically readout Time Projection Chamber with an electron amplification structure based on three Gas Electron Multipliers was studied. He/CF4 based gas mixtures were used in two different proportions (60/40 and 70/30) in a CYGNO prototype with 7 litres sensitive volume. With electrical configurations providing very similar electron gains, an almost full detection efficiency in the whole detector volume was found with both mixtures, while a light yield about 20% larger for the 60/40 was found. The electrostatic stability was tested by monitoring voltages and currents during 25 days. The detector worked in very stable and safe condition for the whole period. In the presence of less CF4, a larger probability of unstable events was clearly detected.
DOI: 10.1023/a:1023059815117
2003
Cited 27 times
Detection of Chlamydiae pneumoniae but not Helicobacter pylori DNA in atherosclerosis plaques.
Chronic infections have been associated with cardiovascular disease. We used bacterial culture, polymerase chain reaction (PCR), and immunohistochemical staining with anti-vacA and anticagA antibodies to search for Helicobacter pylori and Chlamydiae pneumoniae in atherosclerotic plaques obtained at endarterectomy. Serum IgG antibodies to H. pylori and C. pneumoniae were also determined. Thirty-two patients were enrolled. Anti-H. pylori and anti-C. pneumoniae IgG were present in 72% and 81%, respectively. Culture and PCR for H. pylori of vessel walls and plaques were negative. Atherosclerotic plaque and normal vessel sections from H. pylori-negative and- positive patients showed reactivity with anti-vacA and anti-cagA antibodies. C. pneumoniae DNA was amplified in three atherosclerotic lesions. These findings suggest that the association between H. pylor infection and atherosclerosis does not result from continuing direct effects of H. pylori antigens in the vessel walls. Antigens within vessel atherosclerotic plaques cross-react with H. pylori virulence factors and could act as cofactors in determining instability for the atherosclerotic plaques.
DOI: 10.1016/j.nima.2004.07.009
2004
Cited 27 times
Study of long-term performance of CMS RPC under irradiation at the CERN GIF
Several small single gap Resistive Plate Chambers and two RB1 CMS final stations have been exposed during the last year at the CERN Gamma Irradiation Facility to study possible long-term ageing effects. Up to now, an integrated charge of about 0.05C/(cm2gap) and 0.025 C/(cm2 gap) has been accumulated for the small RPCs and the large RB1 stations, respectively. Current, rate, fast charge and efficiency have been continuously monitored with muon beam or cosmics. Results concerning operation with a moisty mixture are also reported.
DOI: 10.1016/j.nima.2010.08.089
2012
Cited 16 times
Study of gas purifiers for the CMS RPC detector
The CMS RPC muon detector utilizes a gas recirculation system called closed loop (CL) to cope with large gas mixture volumes and costs.A systematic study of CL gas purifiers has been carried out over 400 days between July 2008 and August 2009 at CERN in a low-radiation test area, with the use of RPC chambers with currents monitoring, and gas analysis sampling points.The study aimed to fully clarify the presence of pollutants, the chemistry of purifiers used in the CL, and the regeneration procedure.Preliminary results on contaminants release and purifier characterization are reported.
DOI: 10.1016/s0370-2693(02)01572-1
2002
Cited 25 times
Search for a Higgs boson decaying into two photons at LEP
A Higgs particle produced in association with a Z boson and decaying into two photons is searched for in the data collected by the L3 experiment at LEP. All possible decay modes of the Z boson are investigated. No signal is observed in 447.5 pb^-1 of data recorded at centre-of-mass energies up to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two photons as a function of the Higgs mass are derived. A lower limit on the mass of a fermiophobic Higgs boson is set at 105.4 GeV at 95% confidence level.
DOI: 10.1016/s0168-9002(03)01292-0
2003
Cited 21 times
Mechanisms affecting performance of the BaBar resistive plate chambers and searches for remediation
The BaBar experiment at PEPII relies on the instrumentation of the flux return (IFR) for both muon identification and KL detection. The active detector is composed of resistive plate chambers (RPCs) operated in streamer mode. Since the start of operation the RPCs have suffered persistent efficiency deterioration and dark current increase problems. The “autopsy” of bad BaBar RPCs revealed that in many cases uncured linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil “stalagmites” bridging the 2 mm gap. In this paper, a possible model of this “stalagmite” formation and its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently, the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement.
DOI: 10.1016/j.nima.2008.06.009
2008
Cited 16 times
Results about HF production and bakelite analysis for the CMS Resistive Plate Chambers
The formation of reactive compounds in the gas mixture during Resistive Plate Chambers (RPCs) operation at the CERN Gamma Irradiation Facility (GIF) is studied. Results from two different types of chambers are discussed: 50×50cm2 RPC prototypes and two final CMS-RB1 chambers. The RB1 detectors were also connected to a closed loop gas system. Gas composition and possible additional impurities have been monitored in different gamma irradiation conditions both in open and closed loop modes using a gas chromatograph. Dedicated measurements for fluoride concentration in the exhausted gas line were performed at different irradiations and operation conditions using a specific electrode and a High-Performance Liquid Chromatograph. The efficiency of the purifiers system present in the closed loop in removing the F- and others impurities has also been investigated. Finally, the chemical composition of the RPC electrode surface has been analyzed using an electron microscope equipped with an EDS/X-ray.
DOI: 10.1088/1748-0221/11/09/c09018
2016
Cited 10 times
Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment
The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.
DOI: 10.1016/j.nima.2021.165209
2021
Cited 8 times
Performance of an optically read out time projection chamber with ultra-relativistic electrons
The Time Projection Chamber (TPC) is an ideal candidate to finely study the charged particle ionization in a gaseous medium. Large volume TPCs can be readout with a suitable number of channels offering a complete 3D reconstruction of a charged particle track, that is the sequence of its energy releases in the TPC gas volume. Moreover, He-based TPCs are very promising to study keV energy particles as nuclear recoils, opening the possibility for directional searches of Dark Matter (DM) and the study of Solar Neutrinos (SN). In this paper we report the analysis of the data acquired with a small TPC prototype (named LEMOn) built by the CYGNO collaboration that was exposed to a beam of 450 MeV electrons at the Beam Test Facility of National Laboratories of Frascati. LEMOn is operated with a He-CF4 mixture at atmospheric pressure and is based on a Gas Electron Multipliers amplification stage that produces visible light collected by the high granularity and very good sensitivity of scientific CMOS camera. This type of readout – in conjunction with a fast light detection – allows a 3D reconstruction of the electrons tracks. The electrons are leaving a trail of clusters of ionizations corresponding to a few keV energy release each. Their study leads to predict a keV energy threshold and 1–10 mm longitudinal and 0.1–0.3 mm transverse position resolution (sigma) for nuclear recoils, very promising for the application of optically read out TPC to DM searches and SN measurements.
DOI: 10.1016/j.nima.2005.06.084
2005
Cited 19 times
Performance of second generation BABAR resistive plate chambers
The BABAR detector has operated nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap muon detector, for the past two years.The RPCs experience widely different background and luminosity-driven singles rates (0.01-10 Hz/cm 2 ) depending on position within the endcap.Some regions have integrated over 0.3 C/cm 2 .RPC efficiency measured with cosmic rays is high and stable.The average efficiency measured with beam is also high.However, a few of the highest rate RPCs have suffered efficiency losses of 5-15%.Although constructed with improved techniques and minimal use of linseed oil, many of the RPCs, which are operated in streamer mode, have shown increased dark currents and noise rates that are correlated with the direction of the gas flow and the integrated current.Studies of the above aging effects are presented and correlated with detector operating conditions.
DOI: 10.1016/j.nuclphysbps.2007.11.133
2008
Cited 14 times
The gas monitoring system for the Resistive Plate Chamber detector of the CMS experiment at LHC
Due to its large volume (18 m3)the Resistive Plate Chamber (RPC) detector of the Compact Muon Solenoid (CMS) experiment at the LHC proton collider (CERN, Switzerland) will employ a gas re-circulation system. Since the mixture composition and quality are crucial issues for the detector operation, CMS-RPC will use an online gas analysis and monitoring system. An overview of both the CMS-RPC gas system and gas monitoring system is given and the project parameters are described.
DOI: 10.1088/1748-0221/8/04/p04005
2013
Cited 10 times
CMS Resistive Plate Chamber overview, from the present system to the upgrade phase I
Resistive Plate Chambers have been chosen as dedicated trigger muon detector for the Compact Muon Solenoid experiment [1] at the Large Hadron Collider [2] at CERN. The system consists of about 3000 m2 of double gap RPC chambers placed in both the barrel and endcap muon regions.
DOI: 10.1016/j.nima.2023.168325
2023
The CYGNO experiment, a directional detector for direct Dark Matter searches
The CYGNO project aims at the development of a high precision optical readout gaseous Tima Projection Chamber (TPC) for directional dark matter (DM) searches, to be hosted at Laboratori Nazionali del Gran Sasso (LNGS). CYGNO employs a He:CF4 gas mixture at atmospheric pressure with a Gas Electron Multiplier (GEM) based amplification structure coupled to an optical readout comprised of sCMOS cameras and photomultiplier tubes (PMTs). This experimental setup allows to achieve 3D tracking and background rejection down to O(1) keV energy, to boost sensitivity to low WIMP masses. The characteristics of the optical readout approach in terms of the light yield will be illustrated along with the particle identification properties. The project timeline foresees, in the next 2–3 years, the realisation and installation of a 0.4 m3 TPC in the underground laboratories at LNGS to act as a demonstrator. Finally, the studies of the expected DM sensitivities of the CYGNO demonstrator will be presented.
DOI: 10.1088/1361-6501/acf402
2023
Directional iDBSCAN to detect cosmic-ray tracks for the CYGNO experiment
Abstract The CYGNO experiment aims to study rare events related to the search for low-mass dark matter and solar neutrino events. One of the main components of background comes from cosmic rays that generate long tracks in the detector’s images. The interaction of such particles with the gas releases a variable energy profile along its trajectory to form tracks with multiple cores that can be easily reconstructed erroneously by being split into more than one cluster. Thus, this work offers a newly adapted version of the well-known density-based spatial clustering of applications with noise (DBSCAN) algorithm, called iDDBSCAN, which exploits the directional characteristics of the clusters found by the DBSCAN to improve its clustering efficiency when dealing with multi-core tracks. This paper provides a detailed explanation of this algorithm, covering its parameter validation and evaluating its influence when integrated into the experiment’s event selection routine. To generate background events, data acquisition was performed with the detector installed in an overground laboratory, leaving it exposed to natural radiation. To produce signals in the energy range of interest for the experiment, a 55 Fe radioactive source was used. The achieved results showed that the iDDBSCAN algorithm is capable of improving the background rejection of the experiment, through a more accurate reconstruction of the tracks produced by natural radiation such as cosmic rays, without deteriorating its signal detection efficiency and energy estimation.
DOI: 10.1088/1748-0221/18/09/c09010
2023
The CYGNO experiment: a directional Dark Matter detector with optical readout
Abstract We are going to discuss the R&amp;D and the prospects for the CYGNO project, towards the development of an innovative, high precision 3D tracking Time Projection Chamber with optical readout using He:CF 4 gas at 1 bar. CYGNO uses a stack of triple thin GEMs for charge multiplication, this induces scintillation in CF 4 gas, which is readout by PMTs and sCMOS cameras. High granularity and low readout noise of sCMOS along with high sampling of PMT allows CYGNO to have 3D tracking with head tail capability and particle identification down to O(keV) energy for directional Dark Matter searches and solar neutrino spectroscopy. We will present the most recent R&amp;D results from the CYGNO project, and in particular the overground commissioning of the largest prototype developed so far, LIME with a 33×33 cm 2 readout plane and 50 cm of drift length, for a total of 50 litres active volume. We will illustrate the LIME response characterisation between 3.7 keV and 44 keV by means of multiple X-ray sources, and the data Monte-Carlo comparison of simulated sCMOS images in this energy range. Furthermore, we will present current LIME installation, operation and data taking at underground Laboratori Nazionali del Gran Sasso (LNGS), serving as demonstrator for the development of a 0.4 m 3 CYGNO detector. We will conclude by mentioning the technical choices and the prospects of the 0.4 m 3 detector, as laid out in the Technical Design Report (TDR) recently produced by our collaboration.
DOI: 10.1140/epjc/s10052-023-11988-9
2023
A 50 l Cygno prototype overground characterization
Abstract The nature of dark matter is still unknown and an experimental program to look for dark matter particles in our Galaxy should extend its sensitivity to light particles in the GeV mass range and exploit the directional information of the DM particle motion (Vahsen et al. in CYGNUS: feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, arXiv:2008.12587 , 2020). The Cygno project is studying a gaseous time projection chamber operated at atmospheric pressure with a Gas Electron Multiplier (Sauli in Nucl Instrum Meth A 386:531, https://doi.org/10.1016/S0168-9002(96)01172-2 , 1997) amplification and with an optical readout as a promising technology for light dark matter and directional searches. In this paper we describe the operation of a 50 l prototype named LIME (Long Imaging ModulE) in an overground location at Laboratori Nazionali di Frascati (LNF) of INFN. This prototype employs the technology under study for the 1 cubic meter Cygno demonstrator to be installed at the Laboratori Nazionali del Gran Sasso (LNGS) (Amaro et al. in Instruments 2022, 6(1), https://www.mdpi.com/2410-390X/6/1/6 , 2022). We report the characterization of LIME with photon sources in the energy range from few keV to several tens of keV to understand the performance of the energy reconstruction of the emitted electron. We achieved a low energy threshold of few keV and an energy resolution over the whole energy range of 10–20%, while operating the detector for several weeks continuously with very high operational efficiency. The energy spectrum of the reconstructed electrons is then reported and will be the basis to identify radio-contaminants of the LIME materials to be removed for future Cygno detectors.
DOI: 10.1016/s0370-2693(97)01082-4
1997
Cited 21 times
Measurements of mass, width and gauge couplings of the W boson at LEP
We report on measurements of mass and total decay width of the W boson and of triple-gauge-boson couplings, γWW and ZWW, with the L3 detector at LEP. W-pair events produced in e+e− interactions between 161 GeV and 172GeV centre-of-mass energy are selected in a data sample corresponding to a total luminosity of 21.2 pb−1. The mass and total decay width of the W boson are determined to be MW = 80.75−0.27+0.26(exp.) ± 0.03 (LEP) GeV and ΓW = 1.74−0.78+0.88(stat.) ± 0.25(syst.)GeV, respectively. Limits on anomalous triple-gauge-boson couplings, γWW and ZWW, are determined, in particular −1.5 < δZ < 1.9 (95% CL), excluding vanishing ZWW coupling at more than 95% confidence level.
DOI: 10.1016/j.nima.2009.06.095
2010
Cited 10 times
Operational Experience of the Gas Gain Monitoring system of the CMS RPC muon detectors
Performances of the Gas Gain Monitoring system of the CMS RPC muon detectors after one year of operation at the scaled down closed loop recirculation gas system are presented. The GGM is made of 12 single-gap RPC's arranged in a cosmic ray telescope, with charge readout for online monitoring of working point. Preliminary results on sensitivity to gas changes and to environmental variables will be reported on.
DOI: 10.1088/1748-0221/8/12/c12031
2013
Cited 9 times
Status of the Triple-GEM project for the upgrade of the CMS Muon System
The CMS GEM collaboration is performing a feasibility study to install triple-GEM detectors in the forward region of the muon system (1.6 < |η| < 2.4) of the CMS detector at the LHC. Such micro-pattern gas detectors are able to cope with the extreme particle rates that are expected in that region during the High Luminosity phase of the LHC. With their spatial resolution of order 100 micron GEMs would not only provide additional benefits in the CMS muon High Level Trigger, but also in the muon identification and track reconstruction, effectively combining tracking and triggering capabilities in one single device. The present status of the full project will be reviewed, highlighting all importants steps and achievements since the start of the R&amp;D in 2009. Several small and full-size prototypes were constructed with different geometries and techniques. The baseline design of the triple-GEM detector for CMS will be described, along with the results from extensive test measurements of all prototypes both in the lab and in test beams at the CERN SPS. The proposed on- and off-detector electronics for the final system will be presented.
DOI: 10.1109/nssmic.2011.6154312
2011
Cited 9 times
Construction and performance of large-area triple-GEM prototypes for future upgrades of the CMS forward muon system
At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-\eta region. An international collaboration is investigating the possibility of covering the 1.6 < |\eta| < 2.4 region of the muon endcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\times10 cm2) and full-size trapezoidal (1\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.
DOI: 10.1088/1748-0221/8/03/p03017
2013
Cited 9 times
Uniformity and stability of the CMS RPC detector at the LHC
The Resistive Plate Chambers (RPCs) are employed in the CMS experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This note presents results of the RPC detector uniformity and stability during the 2011 data taking period, and preliminary results obtained with 2012 data. The detector uniformity has been ensured with a dedicated High Voltage scan with LHC collisions, in order to determine the optimal operating working voltage of each individual RPC chamber installed in CMS. Emphasis is given on the procedures and results of the High Voltage calibration. Moreover, an increased detector stability has been obtained by automatically taking into account temperature and atmospheric pressure variations in the CMS cavern.
DOI: 10.1016/j.nima.2003.09.018
2003
Cited 14 times
Performances of RPCs in the BaBar experiment
The BaBar experiment uses a big system based on RPC detectors to discriminate muons from pions and to identify neutral hadrons. About 2000m2 of RPC chambers have been working at SLAC since the end of 1998. We report on the performances of the RPC chambers focusing on new problems discovered in the RPC behaviour. These problems started very soon after the installation of the chambers on the detector when the high-ambient temperature triggered an increase of dark currents inside the chambers and a reduction of the efficiency. Careful analysis of the BaBar data and dedicated R&D efforts in the laboratory have helped to identify the main source of the trouble in the linseed oil varnish on the bakelite electrodes.
DOI: 10.1016/j.nima.2004.10.034
2005
Cited 14 times
BaBar forward endcap upgrade
The muon and neutral hadron detector (instrumented flux return or IFR) in the forward endcap of the BaBar detector at SLAC was upgraded by the installation of a new generation of resistive plate chambers (RPCs) and by increasing the absorber. The chamber replacement was made necessary by the rapid aging and efficiency loss of the original BaBar RPCs. Based on our experience with those original RPCs and 24 RPCs with thinner linseed oil treatments, improvements in the design, construction, and testing of the new generation RPCs were implemented and are described in detail.
DOI: 10.1016/j.nima.2009.07.099
2009
Cited 10 times
First measurements of the performance of the Barrel RPC system in CMS
During the summer 2006, a first integrated test of a part of the CMS experiment was performed at CERN collecting a data sample of several millions of cosmic rays events. A fraction of the Resistive Plate Chambers system was successfully operated. Results on the RPC performance are reported.
DOI: 10.1088/1748-0221/4/08/p08006
2009
Cited 10 times
Sensitivity and environmental response of the CMS RPC Gas Gain Monitoring system
Results from the gas gain monitoring (GGM) system for the RPC muon detector in the CMS experiment at the LHC are presented. The system is designed to provide fast and accurate determination of any shift in the working point of the chambers due to gas mixture changes.
DOI: 10.1109/nssmic.2010.5874107
2010
Cited 9 times
Construction of the first full-size GEM-based prototype for the CMS high-&amp;#x03B7; muon system
In view of a possible extension of the forward CMS muon detector system and future LHC luminosity upgrades, Micro-Pattern Gas Detectors (MPGDs) are an appealing technology. They can simultaneously provide precision tracking and fast trigger information, as well as sufficiently fine segmentation to cope with high particle rates in the high-eta region at LHC and its future upgrades. We report on the design and construction of a full-size prototype for the CMS endcap system, the largest Triple-GEM detector built to-date. We present details on the 3D modeling of the detector geometry, the implementation of the readout strips and electronics, and the detector assembly procedure.
DOI: 10.1109/nssmic.2012.6551293
2012
Cited 8 times
Beam test results for new full-scale GEM prototypes for a future upgrade of the CMS high-&amp;#x03B7; Muon System
The CMS GEM collaboration is considering Gas Electron Multipliers (GEMs) for upgrading the CMS forward muon system in the 1.5 <; |η| <; 2.4 endcap region. GEM detectors can provide precision tracking and fast trigger information. They would improve the CMS muon trigger and muon momentum resolution and provide missing redundancy in the high-η region. Employing a new faster construction and assembly technique, we built four full-scale Triple-GEM muon detectors for the inner ring of the first muon endcap station. We plan to install these or further improved versions in CMS during the first long LHC shutdown in 2013/14 for continued testing. These detectors are designed for the stringent rate and resolution requirements in the increasingly hostile environments expected at CMS after the second long LHC shutdown in 2018/19. The new prototypes were studied in muon/pion beams at the CERN SPS. We discuss our experience with constructing the new full-scale production prototypes and present preliminary performance results from the beam test. We also tested smaller Triple-GEM prototypes with zigzag readout strips with 2 mm pitch in these beams and measured a spatial resolution of 73 μm. This readout offers a potential reduction of channel count and consequently electronics cost for this system while maintaining high spatial resolution.
DOI: 10.3938/jkps.73.1080
2018
Cited 8 times
Study of Thin Double-Gap RPCs for the CMS Muon System
DOI: 10.1088/1748-0221/8/02/t02002
2013
Cited 7 times
The upgrade of the CMS RPC system during the first LHC long shutdown
The CMS muon system includes in both the barrel and endcap region Resistive Plate Chambers (RPC). They mainly serve as trigger detectors and also improve the reconstruction of muon parameters. Over the years, the instantaneous luminosity of the Large Hadron Collider gradually increases. During the LHC Phase 1 (~first 10 years of operation) an ultimate luminosity is expected above its design value of 10^34/cm^2/s at 14 TeV. To prepare the machine and also the experiments for this, two long shutdown periods are scheduled for 2013-2014 and 2018-2019. The CMS Collaboration is planning several detector upgrades during these long shutdowns. In particular, the muon detection system should be able to maintain a low-pT threshold for an efficient Level-1 Muon Trigger at high particle rates. One of the measures to ensure this, is to extend the present RPC system with the addition of a 4th layer in both endcap regions. During the first long shutdown, these two new stations will be equipped in the region |eta|<1.6 with 144 High Pressure Laminate (HPL) double-gap RPCs operating in avalanche mode, with a similar design as the existing CMS endcap chambers. Here, we present the upgrade plans for the CMS RPC system for the fist long shutdown, including trigger simulation studies for the extended system, and details on the new HPL production, the chamber assembly and the quality control procedures.
DOI: 10.1088/1748-0221/8/03/t03003
2013
Cited 7 times
Monitoring relative humidity in RPC detectors by use of fiber optic sensors
We propose to adopt Fiber Bragg Grating technology to develop an innovative sensor for monitoring relative humidity of the gas fluxed in Resistive Plate Counters. Use of Fiber Bragg Grating as sensing device makes the proposed sensor well suited to develop distributed real-time monitoring systems to be installed on large volume detectors operated in high electromagnetic fields. In fact Fiber Bragg Gratings are fully immune from electromagnetic disturbances and allow simplified wiring by in-series interconnection of tens of them along a single optical fiber. In this paper we present results intended to investigate the feasibility of our proposal.
DOI: 10.1088/1748-0221/8/03/t03008
2013
Cited 7 times
A study of gas contaminants and interaction with materials in RPC closed loop systems
Resistive Plate Counters (RPC) detectors at the Large Hadron Collider (LHC) experiments use gas recirculation systems to cope with large gas mixture volumes and costs. In this paper a long-term systematic study about gas purifiers, gas contaminants and detector performance is discussed. The study aims at measuring the lifetime of purifiers with new and used cartridge material along with contaminants release in the gas system. During the data-taking the response of several RPC double-gap detectors was monitored in order to characterize the correlation between dark currents, filter status and gas contaminants.
DOI: 10.1016/j.nima.2013.08.015
2013
Cited 7 times
The status of the GEM project for CMS high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0002.gif" overflow="scroll"><mml:mi>η</mml:mi></mml:math> muon system
The dedicated CMS R&D program was intended to study the feasibility of using micropattern detectors for the instrumentation of the vacant |η|>1.6 region in the present Resistive Plate Chambers (RPCs) endcap system. The proposed detector for CMS is a Triple-Gas Electron Multiplier (GEM) trapezoidal chamber, equipped with 1D readout. While during 2010–2011 the Collaboration worked on the prototyping of the detector, during the first part of 2012 a newly developed assembly technique to be used for the mass production was adopted. GEMs can provide precision tracking and fast trigger information, contributing on one hand to the improvement of the CMS muon Trigger and on the other hand to provide the missing redundancy in the high η region. In the view of the next LHC long shutdown (LS1) the CMS GEM Collaboration designed and built four full-size Triple GEM-based muon detectors.
DOI: 10.1088/1748-0221/15/08/p08018
2020
Cited 7 times
First evidence of luminescence in a He/CF<sub>4</sub> gas mixture induced by non-ionizing electrons
Optical readout of Gas Electron Multipliers (GEM) provides very interesting performances and has been proposed for different applications in particle physics. In particular, thanks to its good efficiency in the keV energy range, it is being developed for low-energy and rare event studies, such as Dark Matter search. So far, the optical approach exploits the light produced during the avalanche processes in GEM channels. Further luminescence in the gas can be induced by electrons accelerated by a suitable electric field. The CYGNO collaboration studied this process with a combined use of a triple-GEM structure and a grid in an He/CF$_4$ (60/40) gas mixture at atmospheric pressure. Results reported in this paper allow to conclude that with an electric field of about 11~kV/cm a photon production mean free path of about 1.0~cm was found.
DOI: 10.1088/1748-0221/14/11/c11012
2019
Cited 7 times
The CMS RPC detector performance and stability during LHC RUN-2
The CMS experiment, located at the Large Hadron Collider (LHC) in CERN, has a redundant muon system composed by three different gaseous detector technologies: Cathode Strip Chambers (in the forward regions), Drift Tubes (in the central region), and Resistive Plate Chambers (both its central and forward regions). All three are used for muon reconstruction and triggering. The CMS RPC system confers robustness and redundancy to the muon trigger. The RPC system operation in the challenging background and pileup conditions of the LHC environment is presented. The RPC system provides information to all muon track finders and thus contributing to both muon trigger and reconstruction. The summary of the detector performance results obtained with proton-proton collision at √s = 13 TeV during 2016 and 2017 data taking have been presented. The stability of the system is presented in terms of efficiency and cluster size vs time and increasing instantaneous luminosity. Data-driven predictions about the expected performance during High Luminosity LHC (HL-LHC) stage have been reported.
DOI: 10.1088/1748-0221/16/05/c05002
2021
Cited 6 times
Front-end electronics for CMS iRPC detectors
Abstract A new generation of resistive plate chambers, capable of withstanding high particle fluxes (up to 2000 Hz · cm -2 ) and instrumented with precise timing readout electronics is proposed to equip two of the four high pseudorapidity stations of the CMS muon system. Double-gap RPC detectors, with each gap made of two 1.4 mm High Pressure Laminate electrodes and separated by a gas gap of the same thickness, are proposed. The new layout reduces the amount of the avalanche charge produced by the passage of a charged particle through the detector. This improves the RPC rate capability by reducing the needed time to collect this charge. To keep the RPC efficiency high, a sensitive, low-noise and high time resolution front-end electronics is needed to cope with the lower charge signal of the new RPC. An ASIC called PETIROC that has all these characteristics has been selected to read out the strips of new chambers. Thin (0.6 mm) printed circuit board, 160 cm long, equipped with pickup strips of 0.75 cm average pitch, will be inserted between the two new RPC's gaps. The strips will be read out from both ends, and the arrival time difference of the two ends will be used to determine the hit position along the strip. Results from the improved RPC equipped with the new readout system and exposed to cosmic muons in the high irradiation environment at CERN GIF++ facility are presented in this work.
DOI: 10.1088/1748-0221/9/10/c10033
2014
Cited 6 times
Resistive plate chambers for 2013-2014 muon upgrade in CMS at LHC
During 2013 and 2014 (Long Shutdown LS1) the CMS experiment is upgrading the forward region installing a fourth layer of RPC detectors in order to complete and improve the muon system performances in the view of the foreseen high luminosity run of LHC. The new two endcap disks consists of 144 double-gap RPC chambers assembled at three different production sites: CERN, Ghent (Belgium) and BARC (India). The chamber components as well as the final detectors are subjected to full series of tests established in parallel at all the production sites.
DOI: 10.1088/1748-0221/10/05/c05031
2015
Cited 6 times
Radiation background with the CMS RPCs at the LHC
The Resistive Plate Chambers (RPCs) are employed in the CMS Experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This article presents results of the radiation background measurements performed with the 2011 and 2012 proton-proton collision data collected by CMS. Emphasis is given to the measurements of the background distribution inside the RPCs. The expected background rates during the future running of the LHC are estimated both from extrapolated measurements and from simulation.
DOI: 10.1088/1742-6596/1498/1/012016
2020
Cited 6 times
CYGNO: Triple-GEM Optical Readout for Directional Dark Matter Search
Abstract CYGNO is a project realising a cubic meter demonstrator to study the scalability of the performance of the optical approach for the readout of large-volume, GEM-equipped TPC. This is part of the CYGNUS proto-collaboration which aims at constructing a network of underground observatories for directional Dark Matter search. The combined use of high-granularity sCMOS and fast sensors for reading out the light produced in GEM channels during the multiplication processes was shown to allow on one hand to reconstruct 3D direction of the tracks, offering accurate energy measurements and sensitivity to the source directionality and, on the other hand, a high particle identification capability very useful to distinguish nuclear recoils. Results of the performed R&amp;D and future steps toward a 30-100 cubic meter experiment will be presented.
DOI: 10.1088/1748-0221/15/11/c11012
2020
Cited 6 times
Improved-RPC for the CMS muon system upgrade for the HL-LHC
During Phase-2 of the LHC, known as the High Luminosity LHC (HL-LHC), the accelerator will increase its instantaneous luminosity to 5 × 1034 cm−2 s−1, delivering an integrated luminosity of 3000 fb−1 over 10 years of operation starting from 2027. In view of the HL-LHC, the CMS muon system will be upgraded to sustain efficient muon triggering and reconstruction performance. Resistive Plate Chambers (RPCs) serve as dedicated detectors for muon triggering due to their excellent timing resolution, and will extend the acceptance up to pseudorapidity values of |η|=2.4. Before Long Shutdown 3 (LS3), the RE3/1 and RE4/1 stations of the endcap will be equipped with new improved Resistive Plate Chambers (iRPCs) having different design and geometry than the present RPC system. The iRPC geometry configuration improves the detector's rate capability and its ability to survive the harsh background conditions of the HL-LHC . Also, new electronics with excellent timing performances (time resolution of less than 150 ps) are developed to read out the RPC detectors from both sides of the strips to allow for good spatial resolution along them. The performance of the iRPC has been studied with gamma radiation at the Gamma Irradiation Facility (GIF++) at CERN. Ongoing longevity studies will help to certify the iRPCs for the HL-LHC running period. The main detector parameters such as the current, rate and resistivity are regularly monitored as a function of the integrated charge. Preliminary results of the detector performance will be presented.
DOI: 10.1088/1748-0221/7/12/p12004
2012
Cited 6 times
Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning
The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.
DOI: 10.1016/s0370-2693(00)00163-5
2000
Cited 13 times
Measurement of the probability of gluon splitting into charmed quarks in hadronic Z decays
We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%.
DOI: 10.1088/1748-0221/11/09/c09006
2016
Cited 5 times
High rate, fast timing Glass RPC for the high η CMS muon detectors
The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm−2s−1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.
DOI: 10.1088/1748-0221/11/08/c08008
2016
Cited 5 times
Radiation tests of real-sized prototype RPCs for the Phase-2 Upgrade of the CMS Muon System
We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for the Phase-2 upgrade of the CMS muon system at high η. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs with cosmic rays and with 100-GeV muons provided by the SPS H4 beam line at CERN. To examine the rate capability of the prototype RPCs both at Korea University and at the CERN GIF++ facility, the chambers were irradiated with 137Cs sources providing maximum gamma rates of about 1.5 kHz cm−2. For the 1.6-mm-thick double-gap RPCs, we found the relatively high threshold on the produced detector charge was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II runs of the Large Hadron Collider (LHC).
DOI: 10.48550/arxiv.1505.01648
2015
Cited 5 times
A study of HFO-1234ze (1,3,3,3-Tetrafluoropropene) as an eco-friendly replacement in RPC detectors
The operations of Resistive Plate Chambers in LHC experiments require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This report shows results of studies on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze.
DOI: 10.1016/s0168-9002(02)01532-2
2002
Cited 10 times
The BaBar instrumented flux return performance: lessons learned
The BaBar Collaboration has operated an instrumented flux return (IFR) system covering over 2000m2 with resistive plate chambers (RPCs) for nearly 3 years. The chambers are constructed of bakelite sheets separated by 2mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-year 1999. While initial performance of the system reached design, over time, a significant fraction of the RPCs demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated effort of investigations have identified many of the elements responsible for the degradation. This article presents our current understanding of the aging process of the BaBar RPCs along with the action plan to combat performance degradation of the IFR system.
DOI: 10.1088/1748-0221/7/12/p12006
2012
Cited 5 times
Gas monitoring in RPC by means of non-invasive plasma coated POF sensors
Resistive Plate Counters (RPC) are employed as muon detectors in many high-rate high-energy physics experiments, such as the Compact Muon Solenoid (CMS) experiment currently under way in the Large Hadron Collider (LHC) accelerator at the European Center for Nuclear Research (CERN). A gas mixture containing C2H2F4, i−C4H10 and SF6 is recirculated inside the RPCs during their use and subjected to degradation due to the production of fluoride ions which limits the sensitivity of the RPCs. This paper describes a new sensor that is able to detect low concentrations of fluoride ions in gas mixtures. The sensor is made of a plastic optic fiber (POF) which is made sensitive to F− gaseous ions by means of a thin layer of a glass-\it like\rm material, deposited via plasma onto the fiber core. The F− ions attack the glass-\it like\rm film and alter the transmission capability of the fiber so that the detection simply requires a LED and a photodiode. The sensor exploits a cumulative response which makes it suitable for direct estimation of the total exposure to the F− ions, thus providing a tool that can be used to tune the maintenance of the gas filters. The glass-\it like\rm film is deposited by means of plasma enhanced chemical vapor deposition (PECVD) of organosilicons monomers, which allows the deposition to be performed a low temperature in order to avoid damaging the fiber core.
DOI: 10.1142/9789814405072_0081
2012
Cited 5 times
Construction and Performance of full scale GEM prototypes for future upgrades of the CMS forward Muon system
DOI: 10.48550/arxiv.1211.3939
2012
Cited 5 times
Beam Test Results for New Full-scale GEM Prototypes for a Future Upgrade of the CMS High-eta Muon System
The CMS GEM collaboration is considering Gas Electron Multipliers (GEMs) for upgrading the CMS forward muon system in the 1.5<|eta|<2.4 endcap region. GEM detectors can provide precision tracking and fast trigger information. They would improve the CMS muon trigger and muon momentum resolution and provide missing redundancy in the high-eta region. Employing a new faster construction and assembly technique, we built four full-scale Triple-GEM muon detectors for the inner ring of the first muon endcap station. We plan to install these or further improved versions in CMS during the first long LHC shutdown in 2013/14 for continued testing. These detectors are designed for the stringent rate and resolution requirements in the increasingly hostile environments expected at CMS after the second long LHC shutdown in 2018/19. The new prototypes were studied in muon/pion beams at the CERN SPS. We discuss our experience with constructing the new full-scale production prototypes and present preliminary performance results from the beam test. We also tested smaller Triple-GEM prototypes with zigzag readout strips with 2 mm pitch in these beams and measured a spatial resolution of 73 microns. This readout offers a potential reduction of channel count and consequently electronics cost for this system while maintaining high spatial resolution.
DOI: 10.1088/1748-0221/9/04/c04022
2014
Cited 4 times
A study of film and foil materials for the GEM detector proposed for the CMS muon system upgrade
During the next shutdown of the LHC at CERN, the CMS experiment plans to start installing GEM detectors in the endcap (high pseudorapidity) region. These muon detectors have excellent spatial and temporal resolution as well as a high chemical stability and radiation hardness. A report is given on preliminary results of materials studies that aimed to fully characterize the GEM detector components before and after the exposure to a high-radiation environment.
DOI: 10.1088/1748-0221/9/01/c01053
2014
Cited 4 times
Studies on the upgrade of the muon system in the forward region of the CMS experiment at LHC with GEMs
The LHC data-taking will resume in 2015 with energy of 13–14 TeV and luminosity of 2÷5 × 1034 cm−2 s−1. At those energies, a considerable fraction of the particles produced propagate in the high pseudo-rapidity regions. The proposal for the upgrade of the CMS muon forward system involves Gas Electron Multiplier (GEM) chambers to be installed during the second LHC Long Shutdown (LS2) covering the pseudorapidity range 1.5 < |η| < 2.2. This detector is able to handle the extreme particle rates expected in this region when the LHC will be running at higher luminosity. The GEM is an excellent choice, as its high spatial resolution (order of 100 μm) allows to combine tracking and triggering capabilities, which will improve the CMS muon High Level Trigger, the muon identification and the track reconstruction. Intense R&D has been going on since 2009 and it has lead to the development of several GEM prototypes and associated detector electronics. These GEM prototypes have been subjected to extensive tests in the laboratory and in test beams at the CERN Super Proton Synchrotron (SPS). This contribution will review the status of the CMS upgrade project with GEMs, discussing also the trigger performance.
DOI: 10.1088/1748-0221/16/11/p11014
2021
Cited 4 times
Performance of a triple-GEM demonstrator in pp collisions at the CMS detector
After the Phase-2 high-luminosity upgrade to the Large Hadron Collider (LHC), the collision rate and therefore the background rate will significantly increase, particularly in the high $\eta$ region. To improve both the tracking and triggering of muons, the Compact Muon Solenoid (CMS) Collaboration plans to install triple-layer Gas Electron Multiplier (GEM) detectors in the CMS muon endcaps. Demonstrator GEM detectors were installed in CMS during 2017 to gain operational experience and perform a preliminary investigation of detector performance. We present the results of triple-GEM detector performance studies performed in situ during normal CMS and LHC operations in 2018. The distribution of cluster size and the efficiency to reconstruct high $p_T$ muons in proton--proton collisions are presented as well as the measurement of the environmental background rate to produce hits in the GEM detector.
DOI: 10.1016/j.nuclphysbps.2004.11.389
2006
Cited 7 times
Production and quality control of the Barrel RPC chambers of the CMS experiment
Resistive Plate Chambers, working in avalanche mode, have been choosen as dedicated muon detector both in barrel and endcap region of the CMS experiment for their fast response and for their capability to be produced as tracking devices on large areas. The production of the barrel RPC chambers will be reported here with special enphasis on the quality control and on the acceptation criteria carried out during the production. Results of the tests with cosmic rays both in production and testing sites will be summerized putting in evidence the problems and the critical issues characterizing the different phases of the construction.
DOI: 10.1016/j.nima.2010.09.172
2012
Cited 4 times
A new approach in modeling the behavior of RPC detectors
The response of RPC detectors is highly sensitive to environmental variables. A novel approach is presented to model the response of RPC detectors in a variety of experimental conditions. The algorithm, based on Artificial Neural Networks, has been developed and tested on the CMS RPC gas gain monitoring system during commissioning.
DOI: 10.1088/1748-0221/8/11/c11017
2013
Cited 4 times
Development and performance of large scale triple GEM for CMS
The international CMS GEM collaboration is studying the feasibility of upgrading the CMS forward muon system by adding layers of triple GEM based detectors. After successful tests of small size tripe-GEM chambers in the period of 2010-2011, the collaboration has designed, built and tested full-size GEM chambers for the upgrade purpose. We report on results from test beam and simulation that were conducted to study the performance of the GEM chambers.
DOI: 10.1088/1748-0221/13/08/p08024
2018
Cited 4 times
Long-term performance and longevity studies of the CMS Resistive Plate Chambers
Four double-gap CMS resistive plate chambers are being tested at the CERN Gamma Irradiation Facility to determine the performance and aging effects at the expected conditions of the High Luminosity-Large Hadron Collider. Results up to an integrated charge of 290 millicoulomb/cm2 are reported.
DOI: 10.1088/1748-0221/11/09/c09017
2016
Cited 3 times
R&amp;D towards the CMS RPC Phase-2 upgrade
The high pseudo-rapidity region of the CMS muon system is covered by Cathode Strip Chambers (CSC) only and lacks redundant coverage despite the fact that it is a challenging region for muons in terms of backgrounds and momentum resolution. In order to maintain good efficiency for the muon trigger in this region additional RPCs are planned to be installed in the two outermost stations at low angle named RE3/1 and RE4/1. These stations will use RPCs with finer granularity and good timing resolution to mitigate background effects and to increase the redundancy of the system.
DOI: 10.1088/1748-0221/11/08/p08002
2016
Cited 3 times
Gas Electron Multiplier foil holes: a study of mechanical and deformation effects
The GEM detectors will be installed at the Compact Muon Solenoid (CMS) experiment during Long Shutdown II of the LHC in 2018. The GEM foil is a basic part of the detector which consists of a composite material, i.e. polyimide coated with copper and perforated with a high density of micro holes. In this paper the results of the GEM foil material characterization are reported, and a campaign of tensile and holes deformation tests is performed. During the tests, the complex radiation environment at CMS is taken into account and samples are prepared accordingly to see the impacts of the radiation on the GEM foil, i.e. non-irradiated samples are used as the reference and compared with neutrons- and gamma- irradiated. These studies provide the information necessary to optimize the stress level without damaging the foil and holes during the detector assembly in which the GEM foils stack is stretched simultaneously to maintain the uniform gap among the foils in order to get the designed performance of the detector. Finally, an estimate of the Young's modulus of the GEM foil is provided by using the tensile test data.
DOI: 10.1088/1748-0221/17/01/c01011
2022
Upgrade of the CMS resistive plate chambers for the high luminosity LHC
Abstract During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb −1 . The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solenoid (CMS) experiment. To ensure a highly performing muon system for this period, several upgrades of the Resistive Plate Chamber (RPC) system of the CMS are currently being implemented. These include the replacement of the readout system for the present system, and the installation of two new RPC stations with improved chamber and front-end electronics designs. The current overall status of this CMS RPC upgrade project is presented.
DOI: 10.22323/1.414.0334
2022
LIME: a gaseous TPC with optical readout
The Cygno project aims at the construction of a gaseous Time Projection Chamber (TPC) with optical readout for the high precision three-dimensional tracking of low energy nuclear and electronic recoils down to few keVs. The efficient discrimination between these two processes represents the main challenge of the modern dark matter direct detection experiments. In this context, the gaseous TPCs with optical readout are a promising and innovative technique that can reach very good energy and 3D position reconstruction capabilities thanks to the high performance of the latest generation of scientific CMOS (sCMOS) light sensors. The Cygno experimental setup is characterized by a TPC filled with a ${\rm He}$:${\rm CF_4}$ gas mixture at atmospheric pressure and equipped with a triple Gas Electron Multipliers (GEM) amplification stage. The visible light produced at the GEMs is collected by a scientific CMOS camera and by a set of fast photosensors. In this contribution we will present the 50 L prototype, called Long Imaging ModulE (LIME), foreseen to conclude the R\&D phase of the Cygno project. LIME has been recently installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), with the aim of studying the performance of the Cygno experimental approach in a low background environment and developing a refined trigger and DAQ system for the future upgrades. This is a crucial step towards the development of a larger $\mathcal{O}(1 {\rm m^3})$ demonstrator, which will be an evolution of the LIME detector.
DOI: 10.1016/s0168-9002(00)00974-8
2000
Cited 8 times
Long-term performance of the L3 RPC system
Started in 1994 the L3 experiment has been equipped with a forward–backward muon spectrometer triggered by an RPC system. Made of 192 double-gap RPCs, it has been working for six years in streamer mode and it will continue to run at least one year more. We monitored the behaviour of the system during the L3 run periods and in this paper we report on its present status and long-term performance.
DOI: 10.1109/tns.2002.1039584
2002
Cited 8 times
Resistive plate chamber performance in the BaBar IFR system
The BaBar Collaboration has operated a system covering over 2000 m/sup 2/ with resistive plate chambers for nearly three years. The chambers are constructed of bakelite sheets separated by 2 mm. The inner surfaces are coated with linseed oil. This system provides muon and neutral hadron detection for BaBar. Installation and commissioning were completed in 1998, and operation began mid-1999. While initial performance of the system reached design, over time, a significant fraction of the resistive plate chambers demonstrated significant degradation, marked by increased currents and reduced efficiency. A coordinated investigative effort has identified many of the elements responsible for the degradation.
DOI: 10.1016/j.nima.2004.07.029
2004
Cited 6 times
The cosmics rays quality test procedure for the CMS barrel resistive plate chambers
CMS experiment will use resistive plate chambers (RPCs) as dedicated muon trigger detectors. This requires good chamber global and local performance. To verify the chamber performance intensive tests are going on using a telescope installed at Bari Physics Department. The chamber efficiency is obtained by track reconstruction, which offers also the possibility to perform local efficiency studies. A brief description of the test set-up, reconstruction algorithm and test results are presented in this paper.
DOI: 10.1016/j.nima.2008.12.092
2009
Cited 4 times
Resistive plate chamber commissioning and performance in CMS
The CMS muon system is conceived for trigger and muon track reconstruction. The redundancy and robustness of the system are guaranteed by three complementary subsystems: drift tube in the barrel, cathode strip chamber in the end-cap and resistive plate chamber in barrel and end-cap. The installation of muon stations and read-out trigger electronic has been completed in middle 2007. Since than, a remarkable effort has been addressed to the detector commissioning in order to ensure the readiness of the hardware/software chain for the LHC start up operation. At the end of 2007, a test of an entire CMS slice has been performed, involving about 5% of muon stations. Several thousand cosmic muons events have been collected. Performance of the barrel chambers are reported.
DOI: 10.1016/j.nima.2008.12.226
2009
Cited 4 times
A configurable tracking algorithm to detect cosmic muon tracks for the CMS-RPC based technical trigger
In the CERN CMS experiment at LHC Collider special trigger signals called Technical Triggers will be used for the purpose of test and calibration. The Resistive Plate Chambers (RPC) based Technical Trigger system is a part of the CMS muon trigger system and is designed to detect cosmic muon tracks. It is based on two boards, namely RBC (RPC Balcony Collector) and TTU (Technical Trigger Unit). The proposed tracking algorithm (TA) written in VHDL and implemented in the TTU board detects single or multiple cosmic muon tracks at every bunch crossing along with their track lengths and corresponding chamber coordinates. The TA implementation in VHDL and its preliminary simulation results are presented.
DOI: 10.1109/nssmic.2014.7431249
2014
Cited 3 times
Performance of a large-area GEM detector prototype for the upgrade of the CMS muon endcap system
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5 <| η |< 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 µrad pitch arranged in eight η-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20–120 GeV hadron beams at Fermilab using Ar/CO2 70∶30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 µrad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ± 0.2 (stat)]%. The azimuthal resolution is found to be [123.5 ± 1.6 (stat)] µrad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by ∼ 10 µrad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ± 2.5 stat] µrad is measured, consistent with the expected resolution of strip-pitch/equation µrad. Other η-sectors of the detector show similar response and performance.
DOI: 10.1088/1748-0221/9/03/c03052
2014
Cited 3 times
Development of the data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer
In this contribution we will report on the progress of the design of the readout and data acquisition system being developed for triple-GEM detectors which will be installed in the forward region (1.5 < |η| < 2.2) of the CMS muon spectrometer during the 2nd long shutdown of the LHC, expected in the period 2017–2018. The system will be designed to take full advantage of current generic developments introduced for the LHC upgrades. The current design is based on the use of CERN GLIB boards hosted in micro-TCA crates for the off-detector electronics and the Versatile Link with the GBT chipset to link the front-end electronics to the GLIB boards. In this contribution we will describe the physics goals, the hardware architectures and report on the expected performance of the CMS GEM readout system, including preliminary timing resolution simulations.
DOI: 10.1088/1748-0221/7/05/c05008
2012
Cited 3 times
An overview of the design, construction and performance of large area triple-GEM prototypes for future upgrades of the CMS forward muon system
GEM detectors are used in high energy physics experiments given their good spatial resolution, high rate capability and radiation hardness. An international collaboration is investigating the possibility of covering the 1.6 < |η| < 2.4 region of the CMS muon endcaps with large-area triple-GEM detectors. The CMS high-η area is actually not fully instrumented, only Cathode Strip Chamber (CSC) are installed. The vacant area presents an opportunity for a detector technology able to to cope with the harsh radiation environment; these micropattern gas detectors are an appealing option to simultaneously enhance muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study is presented. Design and construction of small (10cm × 10cm) and full-size trapezoidal (1m × 0.5m) triple-GEM prototypes is described. Results from measurements with x-rays and from test beam campaigns at the CERN SPS is shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system are reported.
DOI: 10.1109/nssmic.2011.6154688
2011
Cited 3 times
Test beam results of the GE1/1 prototype for a future upgrade of the CMS high-&amp;#x03B7; muon system
Gas Electron Multipliers (GEM) are an interesting technology under consideration for the future upgrade of the forward region of the CMS muon system, specifically in the 1.6 <; |η| <; 2:4 endcap region. With a sufficiently fine segmentation GEMs can provide precision tracking as well as fast trigger information. The main objective is to contribute to the improvement of the CMS muon trigger. The construction of large-area GEM detectors is challenging both from the technological and production aspects. In view of the CMS upgrade we have designed and built the largest full-size Triple-GEM muon detector, which is able to meet the stringent requirements given the hostile environment at the high-luminosity LHC. Measurements were performed during several test beam campaigns at the CERN SPS in 2010 and 2011. The main issues under study are efficiency, spatial resolution and timing performance with different inter-electrode gap configurations and gas mixtures. In this paper results of the performance of the prototypes at the beam tests will be discussed.
DOI: 10.1016/s0168-9002(97)01312-0
1998
Cited 9 times
The muon and neutral hadron detector for BaBar
The muon and neutral hadron detector of the BaBar experiment for the PEP-II Asymmetric B-factory at SLAC uses Resistive Plate Counters (RPCs) as active detectors. A large fraction of the total system, which consists of approximately 800 chambers for an overall surface of 2000 m2, has already been built and tested in cosmic rays. Preliminary results of the operating characteristics with a new non-flammable and environmentally safe gas mixture are reported.
DOI: 10.1016/0168-9002(96)00605-5
1996
Cited 9 times
The RPC trigger system of the F/B muon spectrometer at the L3 experiment
Abstract The L3 experiment has recently been upgraded with a Forward-Backward muon spectrometer in view of the LEP 200 physics. Due to their high efficiency and good time resolution, Resistive Plate Counters (RPCs) where chosen for building a system providing the muon trigger in that region. The detector has been successfully built and installed, and the expected performances are confirmed.
DOI: 10.1016/j.nima.2003.09.019
2003
Cited 6 times
Results on long-term performances and laboratory tests of the L3 RPC system at LEP
The RPC detectors in the L3 experiment at LEP work as a trigger system for the Forward–Backward Muon Spectrometer. It consists of 192 bi-gap RPCs working in streamer mode. We monitored the behaviour of the system over seven years of data taking at LEP. To investigate the ageing of the RPCs after this long-term operation, we report the main results obtained from 1994 to 2000, together with the results of tests performed on some RPC chambers in our test site in Napoli with cosmic rays after the dismantling of L3.
DOI: 10.5170/cern-2007-001.284
2006
Cited 5 times
An RPC-based Technical Trigger for the CMS Experiment
In the CMS experiment, sub-detectors may send special trigger signals, called “Technical Triggers”, for purposes like test and calibration. The Resistive Plate Chambers are part of the Muon Trigger System of the experiment, but might also produce a cosmic muon trigger to be used during the commissioning of the detectors, the CMS Magnet Test-Cosmic Challenge and the later running of CMS. The proposed implementation is based on the development of a new board, the RPC Balcony Collector (RBC); the test results on prototypes and their performance during the recent CMS Cosmic Challenge are presented.
DOI: 10.48550/arxiv.physics/0701014
2007
Cited 4 times
Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC
The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC proton collider (CERN, Switzerland) will employ an online gas analysis and monitoring system of the freon-based gas mixture used. We give an overview of the CMS RPC gas system, describe the project parameters and first results on gas-chromatograph analysis. Finally, we report on preliminary results for a set of monitor RPC.
DOI: 10.1016/j.nima.2008.12.234
2009
Cited 3 times
The compact muon solenoid RPC barrel detector
Resistive Plate Chambers (RPC) have been chosen as dedicated trigger muon detectors for the Compact Muon Solenoid [CMS collaboration, Technical Design Report, CERN/LHCC 94-38, 1994. [1]] experiment at the Large Hadron Collider [The LHC project at CERN, LHC-project-report-36, 1996. [2]] at CERN. Four Italian groups from Bari, Frascati, Napoli and Pavia and two Bulgarian groups from Sofia have participated in designing and constructing the RPC barrel system. A sophisticated and complex production line has been organized by the collaboration to build the 480 RPC chambers, with a quality assurance (QA) test, made by 3 consecutive steps, in order to assure full functionality of the chambers. A final certification of the chambers has been made at ISR (CERN) with a month-long test. After that the RPCs have been coupled to the Drift Tube chamber and installed in the iron return yoke of the CMS solenoid. The first chamber was produced in 2002 and last was installed in October 2007. The system is now completely installed and commissioning has been going on since the second half of 2005 to complete the Large Hadron Collider (LHC) startup in the summer of 2008. The chamber construction, the test made, the main results achieved and a short description of all the services needed to run the RPC barrel system will be described in this paper.
DOI: 10.1088/1748-0221/13/09/c09001
2018
Cited 3 times
Fast timing measurement for CMS RPC Phase-II upgrade
With the increase of the LHC luminosity foreseen in the coming years, many detectors currently used in the different LHC experiments will be dramatically impacted and some need to be replaced or upgraded. The new ones should be capable to provide time information to reduce the data ambiguity due to the expected high pileup. We propose to equip CMS high |η| muon chambers with pairs of single gap RPC detectors read out by long pickup strips PCB. The precise time measurement (0<15 ps) of the signal induced by particles crossing the detector on both ends of each strip will give an accurate measurement of the position of the incoming particle along the strip. The absolute time measurement, determined by RPC signal (around 1.5 ns) will also reduce the data ambiguity due to the highly expected pileup and help to identify Heavy Stable Charged Particles (HSCP). The development of a specific electronic chain (analog front-end ASIC, time-to-digital converter stage and printed circuit board design) and the corresponding first results on prototype chambers are presented.
DOI: 10.1088/1748-0221/14/09/c09045
2019
Cited 3 times
RPC radiation background simulations for the high luminosity phase in the CMS experiment
The high luminosity expected from the HL-LHC will be a challenge for the CMS detector. The increased rate of particles coming from the collisions and the radioactivity induced in the detector material could cause significant damage and result in a progressive degradation of its performance. Simulation studies are very useful in these scenarios as they allow one to study the radiation environment and the impact on detector performance. Results are presented for CMS RPC stations considering the operating conditions expected at the HL-LHC.