ϟ

Duje Giljanović

Here are all the papers by Duje Giljanović that you can download and read on OA.mg.
Duje Giljanović’s last known institution is . Download Duje Giljanović PDFs here.

Claim this Profile →
DOI: 10.23731/cyrm-2019-007.1
2019
Cited 78 times
Report from Working Group 1 : Standard Model Physics at the HL-LHC and HE-LHC
The successful operation of the Large Hadron Collider (LHC) and the excellent performance of the ATLAS, CMS, LHCb and ALICE detectors in Run-1 and Run-2 with $pp$ collisions at center-of-mass energies of 7, 8 and 13 TeV as well as the giant leap in precision calculations and modeling of fundamental interactions at hadron colliders have allowed an extraordinary breadth of physics studies including precision measurements of a variety physics processes. The LHC results have so far confirmed the validity of the Standard Model of particle physics up to unprecedented energy scales and with great precision in the sectors of strong and electroweak interactions as well as flavour physics, for instance in top quark physics. The upgrade of the LHC to a High Luminosity phase (HL-LHC) at 14 TeV center-of-mass energy with 3 ab$^{-1}$ of integrated luminosity will probe the Standard Model with even greater precision and will extend the sensitivity to possible anomalies in the Standard Model, thanks to a ten-fold larger data set, upgraded detectors and expected improvements in the theoretical understanding. This document summarises the physics reach of the HL-LHC in the realm of strong and electroweak interactions and top quark physics, and provides a glimpse of the potential of a possible further upgrade of the LHC to a 27 TeV $pp$ collider, the High-Energy LHC (HE-LHC), assumed to accumulate an integrated luminosity of 15 ab$^{-1}$.
DOI: 10.1016/j.revip.2018.11.001
2018
Cited 24 times
Vector boson scattering: Recent experimental and theory developments
This document summarises the talks and discussions happened during the VBSCan Split17 workshop, the first general meeting of the VBSCan COST Action network. This collaboration is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
DOI: 10.48550/arxiv.1902.04070
2019
Cited 18 times
Standard Model Physics at the HL-LHC and HE-LHC
The successful operation of the Large Hadron Collider (LHC) and the excellent performance of the ATLAS, CMS, LHCb and ALICE detectors in Run-1 and Run-2 with $pp$ collisions at center-of-mass energies of 7, 8 and 13 TeV as well as the giant leap in precision calculations and modeling of fundamental interactions at hadron colliders have allowed an extraordinary breadth of physics studies including precision measurements of a variety physics processes. The LHC results have so far confirmed the validity of the Standard Model of particle physics up to unprecedented energy scales and with great precision in the sectors of strong and electroweak interactions as well as flavour physics, for instance in top quark physics. The upgrade of the LHC to a High Luminosity phase (HL-LHC) at 14 TeV center-of-mass energy with 3 ab$^{-1}$ of integrated luminosity will probe the Standard Model with even greater precision and will extend the sensitivity to possible anomalies in the Standard Model, thanks to a ten-fold larger data set, upgraded detectors and expected improvements in the theoretical understanding. This document summarises the physics reach of the HL-LHC in the realm of strong and electroweak interactions and top quark physics, and provides a glimpse of the potential of a possible further upgrade of the LHC to a 27 TeV $pp$ collider, the High-Energy LHC (HE-LHC), assumed to accumulate an integrated luminosity of 15 ab$^{-1}$.
2018
VBSCan Thessaloniki 2018 Workshop Summary
This document reports the first year of activity of the VBSCan COST Action network, as summarised by the talks and discussions happened during the VBSCan Thessaloniki 2018 workshop. The VBSCan COST action is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
2017
Identifikacija elektrona za okidač kalorimetra visoke granularnosti detektora CMS
The plan by 2025. is to upgrade LHC collider and corresponding detectors in order to increase integrated luminosity from 300 fb-1 expected by the end of 2023. to 3000 fb-1. In order to successfully cope with the increased amount of data, High Granularity Calorimeter, HGCAL, will be installed on Compact Muon Solenoid (CMS) detector. Before new calorimeter is installed, simulations which will help in electron identification on the future detector are needed. In the first part of the thesis, FastShower tool is used for getting the first insight into the expected behaviour of the electromagnetic shower in the future detector. In the second part of the thesis effects of clustering are studied which should give rise to a more efficient identification of particles as well as signal and background separation on trigger level as well as offline analysis. In order to achieve more efficient electron identification and separation of signal and background, a condition that every two-dimensional cluster must contain at least two trigger cells is studied.
2022
Study of vector boson scattering in events with four leptons and two jets with the CMS detector at the LHC
2018
VBSCan Thessaloniki 2018 Workshop Summary
This document reports the first year of activity of the VBSCan COST Action network, as summarised by the talks and discussions happened during the VBSCan Thessaloniki 2018 workshop. The VBSCan COST action is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
2018
VBSCan Thessaloniki 2018 Workshop Summary
This document reports the first year of activity of the VBSCan COST Action network, as summarised by the talks and discussions happened during the VBSCan Thessaloniki 2018 workshop. The VBSCan COST action is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.
DOI: 10.48550/arxiv.1906.11332
2019
VBSCan Thessaloniki 2018 Workshop Summary
This document reports the first year of activity of the VBSCan COST Action network, as summarised by the talks and discussions happened during the VBSCan Thessaloniki 2018 workshop. The VBSCan COST action is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.