ϟ

Bruce E. Logan

Here are all the papers by Bruce E. Logan that you can download and read on OA.mg.
Bruce E. Logan’s last known institution is . Download Bruce E. Logan PDFs here.

Claim this Profile →
DOI: 10.1021/es0605016
2006
Cited 5,049 times
Microbial Fuel Cells: Methodology and Technology
Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from microbiology and electrochemistry to materials and environmental engineering. Describing MFC systems therefore involves an understanding of these different scientific and engineering principles. In this paper, we provide a review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results.
DOI: 10.1038/nrmicro2113
2009
Cited 2,022 times
Exoelectrogenic bacteria that power microbial fuel cells
DOI: 10.1021/es0499344
2004
Cited 1,778 times
Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane
Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 ± 10 mW/m2 (6.6 ± 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 ± 21 mW/m2 (12.5 ± 0.5 mW/L). Coulombic efficiency was 40−55% with the PEM and 9−12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 Ω resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 ± 3 mW/m2 (0.7 ± 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 ± 8 mW/m2 (3.7 ± 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 103 mW/m2. A cost-effective approach to achieving power densities in this range will likely require systems that do not contain a polymeric PEM in the MFC and systems based on direct oxygen transfer to a carbon cathode.
DOI: 10.1073/pnas.0604517103
2006
Cited 1,577 times
Electrically conductive bacterial nanowires produced by <i>Shewanella oneidensis</i> strain MR-1 and other microorganisms
Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution.
DOI: 10.1126/science.1217412
2012
Cited 1,527 times
Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies
Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.
DOI: 10.1021/es034923g
2004
Cited 1,416 times
Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell
Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbial fuel cell (SCMFC) containing eight graphite electrodes (anodes) and a single air cathode. The system was operated under continuous flow conditions with primary clarifier effluent obtained from a local wastewater treatment plant. The prototype SCMFC reactor generated electrical power (maximum of 26 mW m(-2)) while removing up to 80% of the COD of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h and to the influent wastewater strength over a range of 50-220 mg/L of COD. Current generation was controlled primarily by the efficiency of the cathode. Optimal cathode performance was obtained by allowing passive air flow rather than forced air flow (4.5-5.5 L/min). The Coulombic efficiency of the system, based on COD removal and current generation, was < 12% indicating a substantial fraction of the organic matter was lost without current generation. Bioreactors based on power generation in MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations.
DOI: 10.1038/nature11477
2012
Cited 1,253 times
Membrane-based processes for sustainable power generation using water
DOI: 10.1021/es062644y
2007
Cited 1,135 times
Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells
To efficiently generate electricity using bacteria in microbial fuel cells (MFCs), highly conductive noncorrosive materials are needed that have a high specific surface area (surface area per volume) and an open structure to avoid biofouling. Graphite brush anodes, consisting of graphite fibers wound around a conductive, but noncorrosive metal core, were examined for power production in cube (C-MFC) and bottle (B-MFC) air-cathode MFCs. Power production in C-MFCs containing brush electrodes at 9600 m2/m3 reactor volume reached a maximum power density of 2400 mW/m2 (normalized to the cathode projected surface area), or 73 W/m3 based on liquid volume, with a maximum Coulombic efficiency (CE) of 60%. This power density, normalized by cathode projected area, is the highest value yet achieved by an air-cathode system. The increased power resulted from a reduction in internal resistance from 31 to 8 Ω. Brush electrodes (4200 m2/m3) were also tested in B-MFCs, consisting of a laboratory media bottle modified to have a single side arm with a cathode clamped to its end. B-MFCs inoculated with wastewater produced up to 1430 mW/m2 (2.3 W/m3, CE = 23%) with brush electrodes, versus 600 mW/m2 with a plain carbon paper electrode. These findings show that brush anodes that have high surface areas and a porous structure can produce high power densities, and therefore have qualities that make them ideal for scaling up MFC systems.
DOI: 10.1021/es801553z
2008
Cited 1,111 times
Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter
The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.
DOI: 10.1016/j.tim.2006.10.003
2006
Cited 1,070 times
Electricity-producing bacterial communities in microbial fuel cells
Microbial fuel cells (MFCs) are not yet commercialized but they show great promise as a method of water treatment and as power sources for environmental sensors. The power produced by these systems is currently limited, primarily by high internal (ohmic) resistance. However, improvements in the system architecture will soon result in power generation that is dependent on the capabilities of the microorganisms. The bacterial communities that develop in these systems show great diversity, ranging from primarily δ-Proteobacteria that predominate in sediment MFCs to communities composed of α-, β-, γ- or δ-Proteobacteria, Firmicutes and uncharacterized clones in other types of MFCs. Much remains to be discovered about the physiology of these bacteria capable of exocellular electron transfer, collectively defined as a community of ‘exoelectrogens’. Here, we review the microbial communities found in MFCs and the prospects for this emerging bioenergy technology. Microbial fuel cells (MFCs) are not yet commercialized but they show great promise as a method of water treatment and as power sources for environmental sensors. The power produced by these systems is currently limited, primarily by high internal (ohmic) resistance. However, improvements in the system architecture will soon result in power generation that is dependent on the capabilities of the microorganisms. The bacterial communities that develop in these systems show great diversity, ranging from primarily δ-Proteobacteria that predominate in sediment MFCs to communities composed of α-, β-, γ- or δ-Proteobacteria, Firmicutes and uncharacterized clones in other types of MFCs. Much remains to be discovered about the physiology of these bacteria capable of exocellular electron transfer, collectively defined as a community of ‘exoelectrogens’. Here, we review the microbial communities found in MFCs and the prospects for this emerging bioenergy technology.
DOI: 10.1021/es803531g
2009
Cited 1,035 times
Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis
New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical production. Here we demonstrate that methane can directly be produced using a biocathode containing methanogens in electrochemical systems (abiotic anode) or microbial electrolysis cells (MECs; biotic anode) by a process called electromethanogenesis. At a set potential of less than -0.7 V (vs Ag/AgCl), carbon dioxide was reduced to methane using a two-chamber electrochemical reactor containing an abiotic anode, a biocathode, and no precious metal catalysts. At -1.0 V, the current capture efficiency was 96%. Electrochemical measurements made using linear sweep voltammetry showed that the biocathode substantially increased current densities compared to a plain carbon cathode where only small amounts of hydrogen gas could be produced. Both increased current densities and very small hydrogen production rates by a plain cathode therefore support a mechanism of methane production directly from current and not from hydrogen gas. The biocathode was dominated by a single Archaeon, Methanobacterium palustre. When a current was generated by an exoelectrogenic biofilm on the anode growing on acetate in a single-chamber MEC, methane was produced at an overall energy efficiency of 80% (electrical energy and substrate heat of combustion). These results show that electromethanogenesis can be used to convert electrical current produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well as serving as a method for the capture of carbon dioxide.
DOI: 10.1016/j.elecom.2006.01.010
2006
Cited 992 times
Increased performance of single-chamber microbial fuel cells using an improved cathode structure
Maximum power densities by air-driven microbial fuel cells (MFCs) are considerably influenced by cathode performance. We show here that application of successive polytetrafluoroethylene (PTFE) layers (DLs), on a carbon/PTFE base layer, to the air-side of the cathode in a single chamber MFC significantly improved coulombic efficiencies (CEs), maximum power densities, and reduced water loss (through the cathode). Electrochemical tests using carbon cloth electrodes coated with different numbers of DLs indicated an optimum increase in the cathode potential of 117 mV with four-DLs, compared to a <10 mV increase due to the carbon base layer alone. In MFC tests, four-DLs was also found to be the optimum number of coatings, resulting in a 171% increase in the CE (from 19.1% to 32%), a 42% increase in the maximum power density (from 538 to 766 mW m−2), and measurable water loss was prevented. The increase in CE due is believed to result from the increased power output and the increased operation time (due to a reduction in aerobic degradation of substrate sustained by oxygen diffusion through the cathode).
DOI: 10.1021/es050244p
2005
Cited 942 times
Electrochemically Assisted Microbial Production of Hydrogen from Acetate
Hydrogen production via bacterial fermentation is currently limited to a maximum of 4 moles of hydrogen per mole of glucose, and under these conditions results in a fermentation end product (acetate; 2 mol/mol glucose) that bacteria are unable to further convert to hydrogen. It is shown here that this biochemical barrier can be circumvented by generating hydrogen gas from acetate using a completely anaerobic microbial fuel cell (MFC). By augmenting the electrochemical potential achieved by bacteria in this MFC with an additional voltage of 250 mV or more, it was possible to produce hydrogen at the cathode directly from the oxidized organic matter. More than 90% of the protons and electrons produced by the bacteria from the oxidation of acetate were recovered as hydrogen gas, with an overall Coulombic efficiency (total recovery of electrons from acetate) of 60-78%. This is equivalent to an overall yield of 2.9 mol H2/mol acetate (assuming 78% Coulombic efficiency and 92% recovery of electrons as hydrogen). This bio-electrochemically assisted microbial system, if combined with hydrogen fermentation that produces 2-3 mol H2/mol glucose, has the potential to produce ca. 8-9 mol H2/mol glucose at an energy cost equivalent to 1.2 mol H2/mol glucose. Production of hydrogen by this anaerobic MFC process is not limited to carbohydrates, as in a fermentation process, as any biodegradable dissolved organic matter can theoretically be used in this process to generate hydrogen from the complete oxidation of organic matter.
DOI: 10.1021/es048927c
2004
Cited 909 times
Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell
Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 Ω) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 Ω). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power output were higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10−31 and 3−7% for acetate and 8−15 and 2−5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.
DOI: 10.1038/s41579-019-0173-x
2019
Cited 905 times
Electroactive microorganisms in bioelectrochemical systems
A vast array of microorganisms from all three domains of life can produce electrical current and transfer electrons to the anodes of different types of bioelectrochemical systems. These exoelectrogens are typically iron-reducing bacteria, such as Geobacter sulfurreducens, that produce high power densities at moderate temperatures. With the right media and growth conditions, many other microorganisms ranging from common yeasts to extremophiles such as hyperthermophilic archaea can also generate high current densities. Electrotrophic microorganisms that grow by using electrons derived from the cathode are less diverse and have no common or prototypical traits, and current densities are usually well below those reported for model exoelectrogens. However, electrotrophic microorganisms can use diverse terminal electron acceptors for cell respiration, including carbon dioxide, enabling a variety of novel cathode-driven reactions. The impressive diversity of electroactive microorganisms and the conditions in which they function provide new opportunities for electrochemical devices, such as microbial fuel cells that generate electricity or microbial electrolysis cells that produce hydrogen or methane.
DOI: 10.1021/es050316c
2005
Cited 842 times
Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration
Power density, electrode potential, coulombic efficiency, and energy recovery in single-chamber microbial fuel cells (MFCs) were examined as a function of solution ionic strength, electrode spacing and composition, and temperature. Increasing the solution ionic strength from 100 to 400 mM by adding NaCl increased power output from 720 to 1330 mW/m2. Power generation was also increased from 720 to 1210 mW/m2 by decreasing the distance between the anode and cathode from 4to 2 cm. The power increases due to ionic strength and electrode spacing resulted from a decrease in the internal resistance. Power output was also increased by 68% by replacing the cathode (purchased from a manufacturer) with our own carbon cloth cathode containing the same Pt loading. The performance of conventional anaerobic treatment processes, such as anaerobic digestion, are adversely affected by temperatures below 30 degrees C. However, decreasing the temperature from 32 to 20 degrees C reduced power output by only 9%, primarily as a result of the reduction of the cathode potential. Coulombic efficiencies and overall energy recovery varied as a function of operating conditions, but were a maximum of 61.4 and 15.1% (operating conditions of 32 degrees C, carbon paper cathode, and the solution amended with 300 mM NaCl). These results, which demonstrate that power densities can be increased to over 1 W/m2 by changing the operating conditions or electrode spacing, should lead to further improvements in power generation and energy recovery in single-chamber, air-cathode MFCs.
DOI: 10.1021/es0627592
2006
Cited 839 times
Microbial Fuel Cells—Challenges and Applications
ADVERTISEMENT RETURN TO ISSUEPREVFEATURENEXTMicrobial Fuel Cells—Challenges and ApplicationsBruce E. Logan and John M. ReganCite this: Environ. Sci. Technol. 2006, 40, 17, 5172–5180Publication Date (Web):September 1, 2006Publication History Published online1 September 2006Published inissue 1 September 2006https://doi.org/10.1021/es0627592RIGHTS & PERMISSIONSArticle Views22977Altmetric-Citations668LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit PDF (461 KB) Get e-AlertsSUBJECTS:Fuels Get e-Alerts
DOI: 10.1016/0967-0637(93)90129-q
1993
Cited 803 times
The abundance and significance of a class of large, transparent organic particles in the ocean
Polysaccharide-specific staining techniques reveal the existence and high abundance of a class of large, discrete, transparent particles in seawater and diatom cultures formed from dissolved exopolymers exuded by phytoplankton and bacteria. Transparent exopolymer particles (TEP), ranged from 28 to 5000 particles ml−1 and 3 to 100s μm in longest dimension at five coastal stations off California. A high percentage of seemingly free-living bacteria (28–68%) were attached to these transparent sheets and films, suggesting that they may alter the distributions and microenvironments of marine microbes in nature. Preliminary coagulation experiments demonstrated that TEP are major agents in the aggregation of diatoms and in the formation of marine snow. The existence of microbial exudates acting as large, discrete particles, rather than as dissolved molecules or as coating on other particles, suggests that the transformation of dissolved organic matter into particulate form in the sea can occur via a rapid abiotic pathway as well as through conventional microbial uptake. The existence of these particles has far reaching implications for food web structure, microbial processes, carbon cycling and particulate flux in the ocean.
DOI: 10.1021/es0491026
2004
Cited 785 times
Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell
A microbial fuel cell (MFC) is a device that converts organic matter to electricity using microorganisms as the biocatalyst. Most MFCs contain two electrodes separated into one or two chambers that are operated as a completely mixed reactor. In this study, a flat plate MFC (FPMFC) was designed to operate as a plug flow reactor (no mixing) using a combined electrode/proton exchange membrane (PEM) system. The reactor consisted of a single channel formed between two nonconductive plates that were separated into two halves by the electrode/PEM assembly. Each electrode was placed on an opposite side of the PEM, with the anode facing the chamber containing the liquid phase and the cathode facing a chamber containing only air. Electricity generation using the FPMFC was examined by continuously feeding a solution containing wastewater, or a specific substrate, into the anode chamber. The system was initially acclimated for 1 month using domestic wastewater or wastewater enriched with a specific substrate such as acetate. Average power density using only domestic wastewater was 72 ± 1 mW/m2 at a liquid flow rate of 0.39 mL/min [42% COD (chemical oxygen demand) removal, 1.1 h HRT (hydraulic retention time)]. At a longer HRT = 4.0 h, there was 79% COD removal and an average power density of 43 ± 1 mW/m2. Power output was found to be a function of wastewater strength according to a Monod-type relationship, with a half-saturation constant of Ks = 461 or 719 mg COD/L. Power generation was sustained at high rates with several organic substrates (all at ∼1000 mg COD/L), including glucose (212 ± 2 mW/m2), acetate (286 ± 3 mW/m2), butyrate (220 ± 1 mW/m2), dextran (150 ± 1 mW/m2), and starch (242 ± 3 mW/m2). These results demonstrate the versatility of power generation in a MFC with a variety of organic substrates and show that power can be generated at a high rate in a continuous flow reactor system.
DOI: 10.1021/es8001822
2008
Cited 779 times
Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane
Hydrogen gas can be produced by electrohydrogenesis in microbial electrolysis cells (MECs) at greater yields than fermentation and at greater energy efficiencies than water electrolysis. It has been assumed that a membrane is needed in an MEC to avoid hydrogen losses due to bacterial consumption of the product gas. However, high cathodic hydrogen recoveries (78 +/- 1% to 96 +/- 1%) were achieved in an MEC despite the absence of a membrane between the electrodes (applied voltages of 0.3 < E(ap) < 0.8 V; 7.5 mS/cm solution conductivity). Through the use of a membrane-less system, a graphite fiber brush anode, and close electrode spacing, hydrogen production rates reached a maximum of 3.12 +/- 0.02 m3 H2/m3 reactor per day (292 +/- 1 A/m3) at an applied voltage of E(ap) = 0.8 V. This production rate is more than double that obtained in previous MEC studies. The energy efficiency relative to the electrical input decreased with applied voltage from 406 +/- 6% (E(ap) = 0.3 V) to 194 +/- 2% (E(ap) = 0.8 V). Overall energy efficiency relative to both E(ap) and energy of the substrate averaged 78 +/- 4%, with a maximum of 86 +/- 2% (1.02 +/- 0.05 m3 H2/m3 day, E(ap) = 0.4 V). At E(ap) = 0.2 V, the hydrogen recovery substantially decreased, and methane concentrations increased from an average of 1.9 +/- 1.3% (E(ap) = 0.3-0.8 V) to 28 +/- 0% of the gas, due to the long cycle time of the reactor. Increasing the solution conductivity to 20 mS/ cm increased hydrogen production rates for E(ap) = 0.3-0.6 V, but consistent reactor performance could not be obtained in the high conductivity solution at E(ap) > 0.6 V. These results demonstrate that high hydrogen recovery and production rates are possible in a single chamber MEC without a membrane, potentially reducing the costs of these systems and allowing for new and simpler designs.
DOI: 10.1021/es0512071
2005
Cited 777 times
Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells
Cathode catalysts and binders were examined for their effect on power densities in single chamber, air-cathode, microbial fuel cells (MFCs). Chronopotentiometry tests indicated thatthe cathode potential was only slightly reduced (20-40 mV) when Pt loadings were decreased from 2 to 0.1 mg cm(-2), and that Nafion performed better as a Pt binder than poly(tetrafluoroethylene) (PTFE). Replacing the precious-metal Pt catalyst (0.5 mg cm(-2); Nafion binder) with a cobalt material (cobalt tetramethylphenylporphyrin, CoTMPP) produced slightly improved cathode performance above 0.6 mA cm(-2), but reduced performance (<40 mV) at lower current densities. MFC fed batch tests conducted for 35 cycles (31 days) using glucose showed that replacement of the Nafion binder used for the cathode catalyst (0.5 mg of Pt cm(-2)) with PTFE reduced the maximum power densities (from 400 +/- 10 to 480 +/- 20 mW m(-2) to 331 +/- 3 to 360 +/- 10 mW m(-2)). When the Pt loading on cathode was reduced to 0.1 mg cm(-2), the maximum power density of MFC was reduced on average by 19% (379 +/- 5 to 301 +/- 15 mW m(-2); Nafion binder). Power densities with CoTMPP were only 12% (369 +/- 8 mW m(-2)) lower over 25 cycles than those obtained with Pt (0.5 mg cm(-2); Nafion binder). Power densities obtained using with catalysts on the cathodes were approximately 4 times more than those obtained using a plain carbon electrode. These results demonstrate that cathodes used in MFCs can contain very little Pt, and that the Pt can even be replaced with a non-precious metal catalyst such as a CoTMPP with only slightly reduced performance.
DOI: 10.1016/j.watres.2005.09.039
2005
Cited 762 times
Electricity generation from swine wastewater using microbial fuel cells
Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters and simultaneously producing electricity. Preliminary tests using a two-chambered MFC with an aqueous cathode indicated that electricity could be generated from swine wastewater containing 8320 +/- 190 mg/L of soluble chemical oxygen demand (SCOD) (maximum power density of 45 mW/m2). More extensive tests with a single-chambered air cathode MFC produced a maximum power density with the animal wastewater of 261 mW/m2 (200 omega resistor), which was 79% larger than that previously obtained with the same system using domestic wastewater (146 +/- 8 mW/m2) due to the higher concentration of organic matter in the swine wastewater. Power generation as a function of substrate concentration was modeled according to saturation kinetics, with a maximum power density of P(max) = 225 mW/m2 (fixed 1000 omega resistor) and half-saturation concentration of K(s) = 1512 mg/L (total COD). Ammonia was removed from 198 +/- 1 to 34 +/- 1 mg/L (83% removal). In order to try to increase power output and overall treatment efficiency, diluted (1:10) wastewater was sonicated and autoclaved. This pretreated wastewater generated 16% more power after treatment (110 +/- 4 mW/m2) than before treatment (96 +/- 4 mW/m2). SCOD removal was increased from 88% to 92% by stirring diluted wastewater, although power output slightly decreased. These results demonstrate that animal wastewaters such as this swine wastewater can be used for power generation in MFCs while at the same time achieving wastewater treatment.
DOI: 10.1007/s00253-009-2378-9
2009
Cited 736 times
Scaling up microbial fuel cells and other bioelectrochemical systems
DOI: 10.1021/es901950j
2009
Cited 677 times
A New Method for Water Desalination Using Microbial Desalination Cells
Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Ω to 970 Ω at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.
DOI: 10.1016/j.elecom.2006.10.023
2007
Cited 642 times
Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells
Changes in microbial fuel cell (MFC) architecture, materials, and solution chemistry can be used to increase power generation by microbial fuel cells (MFCs). It is shown here that using a phosphate buffer to increase solution conductivity, and ammonia gas treatment of a carbon cloth anode substantially increased the surface charge of the electrode (from 0.38 to 3.99 meq m−2), and improved MFC performance. Power increased to 1640 mW m−2 (96 W m−3) using a phosphate buffer, and further to 1970 mW m−2 (115 W m−3) using an ammonia-treated electrode. The combined effects of these two treatments boosted power production by 48% compared to previous results using this air-cathode MFC. In addition, the start up time of an MFC was reduced by 50%.
DOI: 10.1021/es051652w
2006
Cited 635 times
Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing
The maximum power generated in a single-chamber air-cathode microbial fuel cell (MFC) has previously been shown to increase when the spacing between the electrodes is decreased from 4 to 2 cm. However, the maximum power from a MFC with glucose (500 mg/L) decreased from 811 mW/ m2 (R(ex) = 200 omega, Coulombic efficiency of CE = 28%) to 423 mW/m2 (R(ex) = 500 omega, CE = 18%) when the electrode spacing was decreased from 2 to 1 cm (batch mode operation, power normalized by cathode projected area). This decrease in power was unexpected as the internal resistance decreased from 35 omega (2-cm spacing) to 16 omega (1-cm spacing). However, providing advective flow through the porous anode toward the cathode substantially increased power, resulting in the highest maximum power densities yet achieved in an air-cathode system using glucose or domestic wastewater as substrates. For glucose, with a 1-cm electrode spacing and flow through the anode with continuous flow operation of the MFC, the maximum power increased to 1540 mW/m2 (51 W/m3) and the CE increased to 60%. Using domestic wastewater (255 +/- 10 mg of COD/L), the maximum power density was 464 mW/m2 (15.5 W/m3; CE = 27%). Although flow through the anode could lead to plugging, especially for particulate substrates such as domestic wastewater, the system was operated using glucose for over 42 days without clogging. These results show that power output in this air-cathode single-chamber MFC can be increased by reducing the electrode spacing if the reactors are operated in continuous flow mode with advective flow through the anode toward the cathode.
DOI: 10.1021/es062202m
2007
Cited 617 times
Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells
Proton exchange membranes (PEMs) are often used in microbial fuel cells (MFCs) to separate the liquid in the anode and cathode chambers while allowing protons to pass between the chambers. However, negatively or positively charged species present at high concentrations in the medium can also be used to maintain charge balance during power generation. An anion exchange membrane (AEM) produced the largest power density (up to 610 mW/m2) and Coulombic efficiency (72%) in MFCs relative to values achieved with a commonly used PEM (Nafion), a cation exchange membrane (CEM), or three different ultrafiltration (UF) membranes with molecular weight cut offs of 0.5K, 1K, and 3K Daltons in different types of MFCs. The increased performance of the AEM was due to proton charge-transfer facilitated by phosphate anions and low internal resistance. The type of membrane affected maximum power densities in two-chamber, air-cathode cube MFCs (C-MFCs) with low internal resistance (84-91 omega for all membranes except UF-0.5K) but not in two-chamber aqueous-cathode bottle MFCs (B-MFCs) due to their higher internal resistances (1230-1272 omega except UF-0.5K). The UF-0.5K membrane produced very high internal resistances (6009 omega, B-MFC; 1814omega, C-MFC) and was the least permeable to both oxygen (mass transfer coefficient of k(O) = 0.19 x 10(-4) cm/s) and acetate (k(A) = 0.89 x 10(-8) cm/s). Nafion was the most permeable membrane to oxygen (k(O) = 1.3 x 10(-4) cm/s), and the UF-3K membrane was the most permeable to acetate (k(A) = 7.2 x 10(-8) cm/s). Only a small percent of substrate was unaccounted for based on measured Coulombic efficiencies and estimates of biomass production and substrate losses using Nafion, CEM, and AEM membranes (4-8%), while a substantial portion of substrate was lost to unidentified processes for the UF membranes (40-89%). These results show that many types of membranes can be used in two-chambered MFCs, even membranes that transfer negatively charged species.
DOI: 10.1021/es049422p
2004
Cited 584 times
Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells
Although microbial fuel cells (MFCs) generate much lower power densities than hydrogen fuel cells, the characteristics of the cathode can also substantially affect electricity generation. Cathodes used for MFCs are often either Pt-coated carbon electrodes immersed in water that use dissolved oxygen as the electron acceptor or they are plain carbon electrodes in a ferricyanide solution. The characteristics and performance of these two cathodes were compared using a two-chambered MFC. Power generation using the Pt-carbon cathode and dissolved oxygen (saturated) reached a maximum of 0.097 mW within 120 h after inoculation (wastewater sludge and 20 mM acetate) when the cathode was equal size to the anode (2.5 × 4.5 cm). Once stable power was generated after replacing the MFC with fresh medium (no sludge), the Coulombic efficiency ranged from 63 to 78%. Power was proportional to the dissolved oxygen concentration in a manner consistent with Monod-type kinetics, with a half saturation constant of KDO = 1.74 mg of O2/L. Power increased by 24% when the cathode surface areas were increased from 22.5 to 67.5 cm2 and decreased by 56% when the cathode surface area was reduced to 5.8 cm2. Power was also substantially reduced (by 78% to 0.02 mW) if Pt was not used on the cathode. By using ferricyanide instead of dissolved oxygen, the maximum power increased by 50−80% versus that obtained with dissolved oxygen. This result was primarily due to increased mass transfer efficiencies and the larger cathode potential (332 mV) of ferricyanide than that obtained with dissolved oxygen (268 mV). A cathode potential of 804 mV (NHE basis) is theoretically possible using dissolved oxygen, indicating that further improvements in cathode performance with oxygen as the electron acceptor are possible that could lead to increased power densities in this type of MFC.
DOI: 10.1073/pnas.0706379104
2007
Cited 582 times
Sustainable and efficient biohydrogen production via electrohydrogenesis
Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles, but most hydrogen is generated from nonrenewable fossil fuels such as natural gas. Here, we show that efficient and sustainable hydrogen production is possible from any type of biodegradable organic matter by electrohydrogenesis. In this process, protons and electrons released by exoelectrogenic bacteria in specially designed reactors (based on modifying microbial fuel cells) are catalyzed to form hydrogen gas through the addition of a small voltage to the circuit. By improving the materials and reactor architecture, hydrogen gas was produced at yields of 2.01-3.95 mol/mol (50-99% of the theoretical maximum) at applied voltages of 0.2 to 0.8 V using acetic acid, a typical dead-end product of glucose or cellulose fermentation. At an applied voltage of 0.6 V, the overall energy efficiency of the process was 288% based solely on electricity applied, and 82% when the heat of combustion of acetic acid was included in the energy balance, at a gas production rate of 1.1 m(3) of H(2) per cubic meter of reactor per day. Direct high-yield hydrogen gas production was further demonstrated by using glucose, several volatile acids (acetic, butyric, lactic, propionic, and valeric), and cellulose at maximum stoichiometric yields of 54-91% and overall energy efficiencies of 64-82%. This electrohydrogenic process thus provides a highly efficient route for producing hydrogen gas from renewable and carbon-neutral biomass resources.
DOI: 10.1016/j.watres.2005.02.002
2005
Cited 564 times
Electricity generation using membrane and salt bridge microbial fuel cells
Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved organic matter, but optimization of MFCs will require that we know more about the factors that can increase power output such as the type of proton exchange system which can affect the system internal resistance. Power output in a MFC containing a proton exchange membrane was compared using a pure culture (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum was essentially the same, with 40±1 mW/m2 for G. metallireducens and 38±1 mW/m2 for the wastewater inoculum. We also examined power output in a MFC with a salt bridge instead of a membrane system. Power output by the salt bridge MFC (inoculated with G. metallireducens) was 2.2 mW/m2. The low power output was directly attributed to the higher internal resistance of the salt bridge system (19920±50Ω) compared to that of the membrane system (1286±1Ω) based on measurements using impedance spectroscopy. In both systems, it was observed that oxygen diffusion from the cathode chamber into the anode chamber was a factor in power generation. Nitrogen gas sparging, L-cysteine (a chemical oxygen scavenger), or suspended cells (biological oxygen scavenger) were used to limit the effects of gas diffusion into the anode chamber. Nitrogen gas sparging, for example, increased overall Coulombic efficiency (47% or 55%) compared to that obtained without gas sparging (19%). These results show that increasing power densities in MFCs will require reducing the internal resistance of the system, and that methods are needed to control the dissolved oxygen flux into the anode chamber in order to increase overall Coulombic efficiency.
DOI: 10.1007/s00253-008-1360-2
2008
Cited 555 times
Brewery wastewater treatment using air-cathode microbial fuel cells
DOI: 10.1016/j.watres.2005.09.019
2005
Cited 544 times
Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
Hydrogen can be produced from fermentation of sugars in wastewaters, but much of the organic matter remains in solution. We demonstrate here that hydrogen production from a food processing wastewater high in sugar can be linked to electricity generation using a microbial fuel cell (MFC) to achieve more effective wastewater treatment. Grab samples were taken from: plant effluent at two different times during the day (Effluents 1 and 2; 735±15 and 3250±90 mg-COD/L), an equalization tank (Lagoon; 1670±50 mg-COD/L), and waste stream containing a high concentration of organic matter (Cereal; 8920±150 mg-COD/L). Hydrogen production from the Lagoon and effluent samples was low, with 64±16 mL of hydrogen per liter of wastewater (mL/L) for Effluent 1, 21±18 mL/L for Effluent 2, and 16±2 mL/L for the Lagoon sample. There was substantially greater hydrogen production using the Cereal wastewater (210±56 mL/L). Assuming a theoretical maximum yield of 4 mol of hydrogen per mol of glucose, hydrogen yields were 0.61–0.79 mol/mol for the Cereal wastewater, and ranged from 1 to 2.52 mol/mol for the other samples. This suggests a strategy for hydrogen recovery from wastewater based on targeting high-COD and high-sugar wastewaters, recognizing that sugar content alone is an insufficient predictor of hydrogen yields. Preliminary tests with the Cereal wastewater (diluted to 595 mg-COD/L) in a two-chambered MFC demonstrated a maximum of 81±7 mW/m2 (normalized to the anode surface area), or 25±2 mA per liter of wastewater, and a final COD of <30 mg/L (95% removal). Using a one-chambered MFC and pre-fermented wastewater, the maximum power density was 371±10 mW/m2 (53.5±1.4 mA per liter of wastewater). These results suggest that it is feasible to link biological hydrogen production and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy production.
DOI: 10.1016/j.colsurfb.2004.05.006
2004
Cited 535 times
Bacterial adhesion to glass and metal-oxide surfaces
Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si–Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co1–y–zFeyCrz)3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A12O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 ± 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was significantly (P < 10−25) correlated with total adhesion free energy (U) between the bacteria and surface (A = 2162 e−1.8U).Although the correlation was significant, agreement between the model and data was poor for the low energy surfaces (R2 = 0.68), indicating that better models or additional methods to characterize bacteria and surfaces are still needed to more accurately describe initial bacterial adhesion to inorganic surfaces.
DOI: 10.1021/es015783i
2002
Cited 503 times
Biological Hydrogen Production Measured in Batch Anaerobic Respirometers
The biological production of hydrogen from the fermentation of different substrates was examined in batch tests using heat-shocked mixed cultures with two techniques: an intermittent pressure release method (Owen method) and a continuous gas release method using a bubble measurement device (respirometric method). Under otherwise identical conditions, the respirometric method resulted in the production of 43% more hydrogen gas from glucose than the Owen method. The lower conversion of glucose to hydrogen using the Owen protocol may have been produced by repression of hydrogenase activity from high partial pressures in the gastight bottles, but this could not be proven using a thermodynamic/rate inhibition analysis. In the respirometric method, total pressure in the headspace never exceeded ambient pressure, and hydrogen typically composed as much as 62% of the headspace gas. High conversion efficiencies were consistently obtained with heat-shocked soils taken at different times and those stored for up to a month. Hydrogen gas composition was consistently in the range of 60-64% for glucose-grown cultures during logarithmic growth but declined in stationary cultures. Overall, hydrogen conversion efficiencies for glucose cultures were 23% based on the assumption of a maximum of 4 mol of hydrogen/ mol of glucose. Hydrogen conversion efficiencies were similar for sucrose (23%) and somewhat lower for molasses (15%) but were much lower for lactate (0.50%) and cellulose (0.075%).
DOI: 10.1021/es900997w
2009
Cited 492 times
Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells
Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450 degrees C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/ m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, power increased to 1015 mW/m2(51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes.
DOI: 10.1016/j.jpowsour.2009.10.030
2010
Cited 476 times
Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells
Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m−2, which is 34% larger than the untreated control (CF-C, 1020 mW m−2). This power density is 25% higher than using only acid treatment (1100 mW m−2) and 7% higher than that using only heat treatment (1280 mW m−2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C–O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications.
DOI: 10.1016/j.watres.2004.11.019
2005
Cited 462 times
Electricity generation from cysteine in a microbial fuel cell
In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter by bacteria at the anode, with reduction of oxygen at the cathode. Proton exchange membranes used in MFCs are permeable to oxygen, resulting in the diffusion of oxygen into the anode chamber. This could either lower power generation by obligate anaerobes or result in the loss in electron donor from aerobic respiration by facultative or other aerobic bacteria. In order to maintain anaerobic conditions in conventional anaerobic laboratory cultures, chemical oxygen scavengers such as cysteine are commonly used. It is shown here that cysteine can serve as a substrate for electricity generation by bacteria in a MFC. A two-chamber MFC containing a proton exchange membrane was inoculated with an anaerobic marine sediment. Over a period of a few weeks, electricity generation gradually increased to a maximum power density of 19 mW/m2 (700 or 1000Ω resistor; 385 mg/L of cysteine). Power output increased to 39 mW/m2 when cysteine concentrations were increased up to 770 mg/L (493Ω resistor). The use of a more active cathode with Pt- or Pt–Ru, increased the maximum power from 19 to 33 mW/m2 demonstrating that cathode efficiency limited power generation. Power was always immediately generated upon addition of fresh medium, but initial power levels consistently increased by ca. 30% during the first 24 h. Electron recovery as electricity was 14% based on complete cysteine oxidation, with an additional 14% (28% total) potentially lost to oxygen diffusion through the proton exchange membrane. 16S rRNA-based analysis of the biofilm on the anode of the MFC indicated that the predominant organisms were Shewanella spp. closely related to Shewanella affinis (37% of 16S rRNA gene sequences recovered in clone libraries).
DOI: 10.1007/s00253-004-1845-6
2005
Cited 461 times
Evaluation of procedures to acclimate a microbial fuel cell for electricity production
DOI: 10.1021/es034291y
2003
Cited 459 times
The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production
Hydrogen gas can be recovered from the microbial fermentation of organic substrates at high concentrations when interspecies hydrogen transfer to methanogens is prevented. Two techniques that have been used to limit methanogenesis in mixed cultures are heat treatment, to remove nonsporeforming methanogens from an inoculum, and low pH during culture growth. We found that high hydrogen gas concentrations (57-72%) were produced in all tests and that heat treatment (HT) of the inoculum (pH 6.2 or 7.5) produced greater hydrogen yields than low pH (6.2) conditions with a nonheat-treated inoculum (NHT). Conversion efficiencies of glucose to hydrogen (based on a theoretical yield of 4 mol-H2/mol-glucose) were as follows: 24.2% (HT, pH = 6.2), 18.5% (HT, pH = 7.5), 14.9% (NHT, pH = 6.2), and 12.1% (NHT, pH = 7.5). The main products of glucose (3 g-COD/L) utilization (> or = 99%) in batch tests were acetate (3.4-24.1%), butyrate (6.4-29.4%), propionate (0.3-12.8%), ethanol (15.4-28.8%), and hydrogen (4.0-8.1%), with lesser amounts of acetone, propanol, and butanol (COD basis). Hydrogen gas phase concentrations in all batch cultures reached a maximum of 57-72% after 30 h but thereafter rapidly declined to nondetectable levels within 80 h. Separate experiments showed substantial hydrogen losses could occur via acetogenesis and that heat treatment did not prevent acetogenesis. Heat treatment consistently eliminated the production of measurable concentrations of methane. The disappearance of ethanol produced during hydrogen production was likely due to acetic acid production as thermodynamic calculations show that this reaction is spontaneous once hydrogen is depleted. Overall, these results show that low pH was, without heat treatment, sufficient to control hydrogen losses to methanogens in mixed batch cultures and suggest that methods will need to be found to limit acetogenesis in order to increase hydrogen gas yields by batch cultures.
DOI: 10.1007/s00253-005-0066-y
2006
Cited 431 times
Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells
DOI: 10.1021/acs.estlett.5b00180
2015
Cited 427 times
Assessment of Microbial Fuel Cell Configurations and Power Densities
Different microbial electrochemical technologies are being developed for many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions about whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems remain. It is shown here that configuration and fuel (pure chemicals in laboratory media vs actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of the reactor.
DOI: 10.1021/es040468s
2004
Cited 426 times
Peer Reviewed: Extracting Hydrogen and Electricity from Renewable Resources
ADVERTISEMENT RETURN TO ISSUEPREVFeatureNEXTPeer Reviewed: Extracting Hydrogen and Electricity from Renewable ResourcesA roadmap for establishing sustainable processes.Bruce E. LoganCite this: Environ. Sci. Technol. 2004, 38, 9, 160A–167APublication Date (Web):May 1, 2004Publication History Published online1 May 2004Published inissue 1 May 2004https://doi.org/10.1021/es040468sRIGHTS & PERMISSIONSArticle Views8934Altmetric-Citations368LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit PDF (305 KB) Get e-AlertscloseSUBJECTS:Hydrogen Get e-Alerts
DOI: 10.1016/j.biortech.2006.09.036
2007
Cited 387 times
Electricity generation and microbial community analysis of alcohol powered microbial fuel cells
Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40 ± 2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488 ± 12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.
DOI: 10.1007/s00253-011-3130-9
2011
Cited 377 times
Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater
DOI: 10.1021/es800312v
2008
Cited 373 times
Electricity Generation by <i>Rhodopseudomonas palustris</i> DX-1
Bacteria able to generate electricity in microbial fuel cells (MFCs) are of great interest, but there are few strains capable of high power production in these systems. Here we report that the phototrophic purple nonsulfur bacterium Rhodopseudomonas palustris DX-1, isolated from an MFC, produced electricity at higher power densities (2720 +/- 60 mW/m2) than mixed cultures in the same device. While Rhodopseudomonas species are known for their ability to generate hydrogen, they have not previously been shown to generate power in an MFC, and current was generated without the need for light or hydrogen production. Strain DX-1 utilizes a wide variety of substrates (volatile acids, yeast extract, and thiosulfate) for power production in different metabolic modes, making it highly useful for studying power generation in MFCs and generating power from a range of simple and complex sources of organic matter. These results demonstrate that a phototrophic purple nonsulfur bacterium can efficiently generate electricity by direct electron transfer in MFCs, providing another model microorganism for MFC investigations.
DOI: 10.1016/j.biortech.2009.07.039
2010
Cited 370 times
Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures
Domestic wastewater treatment was examined under two different temperature (23 ± 3 °C and 30 ± 1 °C) and flow modes (fed-batch and continuous) using single-chamber air–cathode microbial fuel cells (MFCs). Temperature was an important parameter for treatment efficiency and power generation. The highest power density of 422 mW/m2 (12.8 W/m3) was achieved under continuous flow and mesophilic conditions, at an organic loading rate of 54 g COD/L-d, achieving 25.8% COD removal. Energy recovery was found to depend significantly on the operational conditions (flow mode, temperature, organic loading rate, and HRT) as well as the reactor architecture. The results demonstrate that the main advantages of using temperature-phased, in-series MFC configurations for domestic wastewater treatment are power savings, low solids production, and higher treatment efficiency.
DOI: 10.1016/j.jpowsour.2007.02.016
2007
Cited 362 times
Voltage reversal during microbial fuel cell stack operation
Microbial fuel cells (MFC) can be used to directly generate electricity from organic matter, but the voltage produced by a single reactor is only ∼0.5 V. Voltage can be increased by stacking cells, i.e. by linking individual reactors in series, as is commonly done with hydrogen fuel cells, to provide a higher voltage output. A two-cell air-cathode MFC stack tested here produced a working voltage of 0.9 V (external load 500 Ω) and had an open circuit voltage (OCV) of 1.3 V when operated in fed batch mode under substrate-sufficient conditions. When multiple cells are stacked together, however, charge reversal can result in the reverse polarity of one or more cells and a loss of power generation. We investigated the causes of charge reversal and the impact of prolonged reversal on power generation using a two air-cathode MFCs stack. When voltage began to decline at the end of a fed batch cycle, we observed voltage reversal with one cell producing a working voltage of 0.6 V, and the other cell having a reversed voltage of −0.58 V, producing only a minimal stack voltage of 0.02 V. The reason for the voltage reversal was shown to be fuel starvation, resulting in a loss of bacterial activity. Voltage reversal adversely affected bacteria on the anode of the affected cell, as shown by a relative decrease in cell performance following a cycle of starvation (no feeding). The control of voltage reversal will be crucial for long-term operation of MFCs in series. Rapid feeding of a cell can restore positive voltage generation, but the long-term impact of charge reversal will be inactivation of bacteria and it will require that the affected cells be short-circuited to maintain stack power production. A better understanding of the long term effects of voltage reversal on power generation by MFC stacks is needed in order to efficiently increase voltage production by using stacked MFC systems.
DOI: 10.1016/j.elecom.2009.09.024
2009
Cited 361 times
Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs.
DOI: 10.1016/0967-0637(94)90007-8
1994
Cited 345 times
The role of particulate carbohydrate exudates in the flocculation of diatom blooms
Diatom blooms are frequently terminated by mass aggregation of cells into large, rapidly sinking aggregates. It has been hypothesized that transparent exopolymer particles (TEP), abundant particles formed from the polysaccharides exuded by living cells, may be essential for this mass flocculation processes. We investigated the abundance of TEP and their role in the aggregation of diatoms in laboratory cultures and during a natural diatom bloom off California. TEP and dissolved carbohydrates accumulated appreciably over the growth cycle of Chaetoceros gracilis in the laboratory. The flocculation of C. gracilis in a laboratory flocculator was dominated by TEP, not cells, and large flocs, consisting predominantly of particulate polysaccharides, formed at a rate more than an order of magnitude higher than predicted by coagulation theory for cells alone. The frequency of interparticle attachment was three orders of magnitude higher for TEP than for cells. The pattern of flocculation of a natural diatom bloom was similar to that of laboratory cultures. Prior to bloom flocculation the abundance and total quantity of TEP and the concentration of particulate carbohydrates increased, while dissolved carbohydrate concentrations decreased. During the flocculation stage TEP aggregated into fewer, but much larger particles and concentrations of dissolved carbohydrates decreased further. The percentage of diatom cells which were attached to TEP increased during the flocculation period from 3 to 90% and TEP formed the matrix of all the natural diatom aggregates observed. During the late flocculation stage the quantity of TEP and TEP aggregates did not increase further and concentrations of diatoms decreased, presumably because large flocs sank out. Our findings indicate that TEP should be included in models of particle aggregation in the ocean. The abundance, large size and high sticking coefficient of TEP make them essential to the aggregation of diatom blooms. The extracellular release of polysaccharides by growing cells may be an adaptation for aggregation. The abiotic formation of particulate organic matter (TEP) from dissolved organic matter (DOC) may help to explain the extremely high turnover rates of DOC observed during blooms.
DOI: 10.1016/j.ijhydene.2007.02.035
2007
Cited 312 times
Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)
Hydrogen production from domestic wastewater was examined using a plain carbon electrode or graphite-granule packed-bed bioelectrochemically assisted microbial reactors (BEAMRs) capable of continuous or intermittent hydrogen release. When graphite granules were added to the anode chamber (packed-bed mode) current density was increased when the domestic wastewater had a high initial chemical oxygen demand (COD>360mg/L), and produced a maximum Coulombic efficiency of 26% (applied voltage of 0.41 V) and a maximum hydrogen recovery of 42% (applied voltage of 0.5 V). The packed-bed system successfully treated the wastewater, with removal efficiencies of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and dissolved organic carbon (DOC) in the range of 87–100%. The final BOD of the treated wastewater was always reduced to less than 7.0±0.2mg/L. Overall hydrogen production based on COD removal was a maximum of 0.0125mg-H2/mg-COD (154mL-H2/g-COD versus a maximum possible conversion of 0.126mg-H2/mg-COD), with an energy requirement equivalent to 0.0116mg-H2/mg-COD, producing an 8% net yield of H2. These results demonstrate that a wastewater treatment based on a BEAMR reactor is feasible, but improvements are needed in hydrogen recoveries and Coulombic efficiencies to increase the overall hydrogen yield.
DOI: 10.1021/nl200500s
2011
Cited 299 times
Batteries for Efficient Energy Extraction from a Water Salinity Difference
The salinity difference between seawater and river water is a renewable source of enormous entropic energy, but extracting it efficiently as a form of useful energy remains a challenge. Here we demonstrate a device called "mixing entropy battery", which can extract and store it as useful electrochemical energy. The battery, containing a Na(2-x)Mn(5)O(10) nanorod electrode, was shown to extract energy from real seawater and river water and can be applied to a variety of salt waters. We demonstrated energy extraction efficiencies of up to 74%. Considering the flow rate of river water into oceans as the limiting factor, the renewable energy production could potentially reach 2 TW, or ∼13% of the current world energy consumption. The mixing entropy battery is simple to fabricate and could contribute significantly to renewable energy in the future.
DOI: 10.1007/s00253-008-1546-7
2008
Cited 296 times
Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell
DOI: 10.1021/es901631p
2009
Cited 290 times
Separator Characteristics for Increasing Performance of Microbial Fuel Cells
Two challenges for improving the performance of air cathode, single-chamber microbial fuel cells (MFCs) include increasing Coulombic efficiency (CE) and decreasing internal resistance. Nonbiodegradable glass fiber separators between the two electrodes were shown to increase power and CE, compared to cloth separators (J-cloth) that were degraded over time. MFC tests were conducted using glass fiber mats with thicknesses of 1.0 mm (GF1) or 0.4 mm (GF0.4), a cation exchange membrane (CEM), and a J-cloth (JC), using reactors with different configurations. Higher power densities were obtained with either GF1 (46 ± 4 W/m3) or JC (46 ± 1 W/m3) in MFCs with a 2 cm electrode spacing, when the separator was placed against the cathode (S-configuration), rather than MFCs with GF0.4 (36 ± 1 W/m3) or CEM (14 ± 1 W/m3). Power was increased to 70 ± 2 W/m3 by placing the electrodes on either side of the GF1 separator (single separator electrode assembly, SSEA) and further to 150 ± 6 W/m3 using two sets of electrodes spaced 2 cm apart (double separator electrode assembly, DSEA). Reducing the DSEA electrode spacing to 0.3 cm increased power to 696 ± 26 W/m3 as a result of a decrease in the ohmic resistance from 5.9 to 2.2 Ω. The main advantages of a GF1 separator compared to JC were an improvement in the CE from 40% to 81% (S-configuration), compared to only 20−40% for JC under similar conditions, and the fact that GF1 was not biodegradable. The high CE for the GF1 separator was attributed to a low oxygen mass transfer coefficient (kO = 5.0 × 10−5 cm/s). The GF1 and JC materials differed in the amount of biomass that accumulated on the separator and its biodegradability, which affected long-term power production and oxygen transport. These results show that materials and mass transfer properties of separators are important factors for improving power densities, CE, and long-term performance of MFCs.
DOI: 10.1016/j.biortech.2010.12.104
2011
Cited 290 times
Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities.
DOI: 10.1016/j.jpowsour.2008.12.144
2009
Cited 275 times
The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells
Microbial electrolysis cells (MECs) are used to produce hydrogen gas from the current generated by bacteria, but low-cost alternatives are needed to typical cathode materials (carbon cloth, platinum and Nafion™). Stainless steel A286 was superior to platinum sheet metal in terms of cathodic hydrogen recovery (61% vs. 47%), overall energy recovery (46% vs. 35%), and maximum volumetric hydrogen production rate (1.5 m3 m−3 day−1 vs. 0.68 m3 m−3 day−1) at an applied voltage of 0.9 V. Nickel 625 was better than other nickel alloys, but it did not perform as well as SS A625. The relative ranking of these materials in MEC tests was in agreement with cyclic voltammetry studies. Performance of the stainless steel and nickel cathodes was further increased, even at a lower applied voltage (0.6 V), by electrodepositing a nickel oxide layer onto the sheet metal (cathodic hydrogen recovery, 52%, overall energy recovery, 48%; maximum volumetric hydrogen production rate, 0.76 m3 m−3 day−1). However, performance of the nickel oxide cathodes decreased over time due to a reduction in mechanical stability of the oxides (based on SEM–EDS analysis). These results demonstrate that non-precious metal cathodes can be used in MECs to achieve hydrogen gas production rates better than those obtained with platinum.
DOI: 10.1016/j.ijhydene.2009.05.112
2009
Cited 274 times
Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H2/mol-glucose at a rate of 0.25 L H2/L-d with a corn stover lignocellulose feed, and 1.64 mol H2/mol-glucose and 1.65 L H2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70–85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC process.
DOI: 10.1002/bit.22346
2009
Cited 273 times
Energy from algae using microbial fuel cells
Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.
DOI: 10.1039/c002307h
2010
Cited 272 times
Using microbial desalination cells to reduce water salinity prior to reverse osmosis
A microbial desalination cell (MDC) is a new method to reduce the salinity of one solution while generating electrical power from organic matter and bacteria in another (anode) solution. Substantial reductions in the salinity can require much larger volumes of the anode solution than the saline water, but any reduction of salinity will benefit the energy efficiency of a downstream reverse osmosis (RO) desalination system. We investigated here the use of an MDC as an RO pre-treatment method using a new type of air-cathode MDC containing three equally sized chambers. A single cycle of operation using a 1 g L−1 acetate solution reduced the conductivity of salt water (5 g L−1 NaCl) by 43 ± 6%, and produced a maximum power density of 480 mW m−2 with a coulombic efficiency of 68 ± 11%. A higher concentration of acetate (2 g L−1) reduced solution conductivity by 60 ± 7%, and a higher salt concentration (20 g L−1 NaCl) reduced solution conductivity by 50 ± 7%. The use of membranes with increased ion exchange capacities further decreased the solution conductivity by 63 ± 2% (20 g L−1 NaCl). These results demonstrate substantial (43–67%) desalination of water is possible using equal volumes of anode solution and salt water. These results show that MDC treatment could be used to substantially reduce salt concentrations and thus energy demands for downstream RO processing, while at the same time producing electrical power.
DOI: 10.1128/aem.02732-07
2008
Cited 267 times
Isolation of the Exoelectrogenic Bacterium <i>Ochrobactrum anthropi</i> YZ-1 by Using a U-Tube Microbial Fuel Cell
Exoelectrogenic bacteria have potential for many different biotechnology applications due to their ability to transfer electrons outside the cell to insoluble electron acceptors, such as metal oxides or the anodes of microbial fuel cells (MFCs). Very few exoelectrogens have been directly isolated from MFCs, and all of these organisms have been obtained by techniques that potentially restrict the diversity of exoelectrogenic bacteria. A special U-tube-shaped MFC was therefore developed to enrich exoelectrogenic bacteria with isolation based on dilution-to-extinction methods. Using this device, we obtained a pure culture identified as Ochrobactrum anthropi YZ-1 based on 16S rRNA gene sequencing and physiological and biochemical characterization. Strain YZ-1 was unable to respire using hydrous Fe(III) oxide but produced 89 mW/m(2) using acetate as the electron donor in the U-tube MFC. Strain YZ-1 produced current using a wide range of substrates, including acetate, lactate, propionate, butyrate, glucose, sucrose, cellobiose, glycerol, and ethanol. Like another exoelectrogenic bacterium (Pseudomonas aeruginosa), O. anthropi is an opportunistic pathogen, suggesting that electrogenesis should be explored as a characteristic that confers advantages to these types of pathogenic bacteria. Further applications of this new U-tube MFC system should provide a method for obtaining additional exoelectrogenic microorganisms that do not necessarily require metal oxides for cell respiration.
DOI: 10.1016/j.biortech.2010.10.137
2011
Cited 265 times
Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.
DOI: 10.1016/j.jpowsour.2007.07.010
2007
Cited 264 times
Microbial fuel cell performance with non-Pt cathode catalysts
Various cathode catalysts prepared from metal porphyrines and phthalocyanines were examined for their oxygen reduction activity in neutral pH media. Electrochemical studies were carried out with metal tetramethoxyphenylporphyrin (TMPP), CoTMPP and FeCoTMPP, and metal phthalocyanine (Pc), FePc, CoPc and FeCuPc, supported on Ketjenblack (KJB) carbon. Iron phthalocyanine supported on KJB (FePc-KJB) carbon demonstrated higher activity towards oxygen reduction than Pt in neutral media. The effect of carbon substrate was investigated by evaluating FePc on Vulcan XC carbon (FePcVC) versus Ketjenblack carbon. FePc-KJB showed higher activity than FePcVC suggesting the catalyst activity could be improved by using carbon substrate with a higher surface area. With FePc-KJB as the MFC cathode catalyst, a power density of 634 mW m−2 was achieved in 50 mM phosphate buffer medium at pH 7, which was higher than that obtained using the precious-metal Pt cathode (593 mW m−2). Under optimum operating conditions (i.e. using a high surface area carbon brush anode and 200 mM PBM as the supporting electrolyte with 1 g L−1 acetate as the substrate), the power density was increased to 2011 mW m−2. This high power output indicates that MFCs with low cost metal macrocycles catalysts is promising in further practical applications.
DOI: 10.1016/j.jpowsour.2007.12.120
2008
Cited 260 times
Scale-up of membrane-free single-chamber microbial fuel cells
Scale-up of microbial fuel cells (MFCs) will require a better understanding of the effects of reactor architecture and operation mode on volumetric power densities. We compared the performance of a smaller MFC (SMFC, 28 mL) with a larger MFC (LMFC, 520 mL) in fed-batch mode. The SMFC produced 14 W m−3, consistent with previous reports for this reactor with an electrode spacing of 4 cm. The LMFC produced 16 W m−3, resulting from the lower average electrode spacing (2.6 cm) and the higher anode surface area per volume (150 m2 m−3 vs. 25 m2 m−3 for the SMFC). The effect of the larger anode surface area on power was shown to be relatively insignificant by adding graphite granules or using graphite fiber brushes in the LMFC anode chamber. Although the granules and graphite brushes increased the surface area by factors of 6 and 56, respectively, the maximum power density in the LMFC was only increased by 8% and 4%. In contrast, increasing the ionic strength of the LMFC from 100 to 300 mM using NaCl increased the power density by 25% to 20 W m−3. When the LMFC was operated in continuous flow mode, a maximum power density of 22 W m−3 was generated at a hydraulic retention time of 11.3 h. Although a thick biofilm was developed on the cathode surface in this reactor, the cathode potentials were not significantly affected at current densities <1.0 mA cm−2. These results demonstrate that power output can be maintained during reactor scale-up; increasing the anode surface area and biofilm formation on the cathode do not greatly affect reactor performance, and that electrode spacing is a key design factor in maximizing power generation.
DOI: 10.1016/j.copbio.2011.03.003
2011
Cited 258 times
The electric picnic: synergistic requirements for exoelectrogenic microbial communities
Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the different microbial populations present in these exoelectrogenic biofilms. Rapid utilization of fermentation end products by exoelectrogens (typically Geobacter species) relieves feedback inhibition for the fermentative consortia, allowing for rapid metabolism of organics. Identification of specific syntrophic processes and the communities characteristic of these anodic biofilms will be a valuable aid in improving the performance of BESs.
DOI: 10.1016/j.watres.2008.12.037
2009
Cited 253 times
Hydrogen and methane production from swine wastewater using microbial electrolysis cells
The production of a useful and valuable product during swine wastewater treatment, such as hydrogen gas, could help to lower treatment costs. Hydrogen can theoretically be produced from wastewater by electrohydrogenesis in a microbial electrolysis cell (MEC) or by fermentation. Using a single-chamber MEC with a graphite-fiber brush anode, hydrogen gas was generated at 0.9–1.0 m 3 m −3 day −1 H 2 using a full-strength or diluted swine wastewater. COD removals ranged from 8 to 29% in 20-h tests, and from 69 to 75% in longer tests (184 h) using full-strength wastewater. The gas produced was up to 77 ± 11% hydrogen, with overall recoveries of up to 28 ± 6% of the COD in the wastewater as hydrogen gas. Methane was also produced at a maximum of 13 ± 4% of total gas volume. The efficiency of hydrogen production, based on the electrical energy needed (but excluding the energy in the wastewater) compared to the energy of the hydrogen gas produced, was as high as 190 ± 39% in 42-h batch tests with undiluted wastewater, but was lower in longer batch tests of 184 h (91 ± 6%). Hydrogen gas could not be recovered in fermentation tests using wastewater with a heat-treated inoculum. Hydrogen production was shown to be possible by fermentation when the wastewater was sterilized, but this process would not be practical or energy efficient. We therefore conclude from these tests that MECs are an effective method for hydrogen recovery from swine wastewater treatment, although the process needs to be further evaluated for reducing methane production, increasing the efficiency of converting the organic matter into current, and increasing recovery of hydrogen gas produced at the cathode.
DOI: 10.1016/j.bios.2011.08.025
2011
Cited 248 times
Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells
Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214 ± 123 mW/m2 (cathode projected surface area; 35 ± 4 W/m3 based on liquid volume), but it decreased by 40% after 1 year to 734 ± 18 mW/m2. The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014 ± 2 mW/m2 to 789 ± 68 mW/m2). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ∼750 mW/m2 after 1 year.
DOI: 10.1016/j.desal.2012.07.022
2013
Cited 242 times
Microbial desalination cells for energy production and desalination
Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4 A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology.
DOI: 10.1128/aem.02600-08
2009
Cited 242 times
Simultaneous Cellulose Degradation and Electricity Production by <i>Enterobacter cloacae</i> in a Microbial Fuel Cell
ABSTRACT Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from many different biodegradable substrates. When cellulose is used as the substrate, electricity generation requires a microbial community with both cellulolytic and exoelectrogenic activities. Cellulose degradation with electricity production by a pure culture has not been previously demonstrated without addition of an exogenous mediator. Using a specially designed U-tube MFC, we enriched a consortium of exoelectrogenic bacteria capable of using cellulose as the sole electron donor. After 19 dilution-to-extinction serial transfers of the consortium, 16S rRNA gene-based community analysis using denaturing gradient gel electrophoresis and band sequencing revealed that the dominant bacterium was Enterobacter cloacae . An isolate designated E. cloacae FR from the enrichment was found to be 100% identical to E. cloacae ATCC 13047 T based on a partial 16S rRNA sequence. In polarization tests using the U-tube MFC and cellulose as a substrate, strain FR produced 4.9 ± 0.01 mW/m 2 , compared to 5.4 ± 0.3 mW/m 2 for strain ATCC 13047 T . These results demonstrate for the first time that it is possible to generate electricity from cellulose using a single bacterial strain without exogenous mediators.
DOI: 10.1021/es500737m
2014
Cited 242 times
A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment
Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.
DOI: 10.1016/j.biortech.2010.05.019
2011
Cited 238 times
Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters
Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current.
DOI: 10.1126/science.1219330
2012
Cited 237 times
Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells
Waste Not The organic matter in wastewater is a potentially vast and sustainable energy source; however, most wastewater treatment plants consume energy. Cusick et al. (p. 1474 , published online 1 March) combined a microbial fuel cell with a reverse-electrodialysis system to boost the voltage output and the power density over a simple microbial fuel cell. The use of ammonium bicarbonate as a fuel for reverse electrodialysis while microorganisms simultaneously turn organic matter into electricity not only allows for the capturing of waste heat, but could eventually produce enough energy to offset the energy used in conventional wastewater treatment systems.
DOI: 10.1021/am403207w
2013
Cited 234 times
Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes
Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure–property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data.
DOI: 10.1021/es803074x
2009
Cited 232 times
High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells
Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matter, but alternatives to precious metals are needed for cathode catalysts. We show here that high surface area stainless steel brush cathodes produce hydrogen at rates and efficiencies similar to those achieved with platinum-catalyzed carbon cloth cathodes in single-chamber MECs. Using a stainless steel brush cathode with a specific surface area of 810 m2/m3, hydrogen was produced at a rate of 1.7 ± 0.1 m3-H2/m3-d (current density of 188 ± 10 A/m3) at an applied voltage of 0.6 V. The energy efficiency relative to the electrical energy input was 221 ± 8%, and the overall energy efficiency was 78 ± 5% based on both electrical energy and substrate utilization. These values compare well to previous results obtained using platinum on flat carbon cathodes in a similar system. Reducing the cathode surface area by 75% decreased performance from 91 ± 3 A/m3 to 78 ± 4 A/m3. A brush cathode with graphite instead of stainless steel and a specific surface area of 4600 m2/m3 generated substantially less current (1.7 ± 0.0 A/m3), and a flat stainless steel cathode (25 m2/m3) produced 64 ± 1 A/m3, demonstrating that both the stainless steel and the large surface area contributed to high current densities. Linear sweep voltammetry showed that the stainless steel brush cathodes both reduced the overpotential needed for hydrogen evolution and exhibited a decrease in overpotential over time as a result of activation. These results demonstrate for the first time that hydrogen production can be achieved at rates comparable to those with precious metal catalysts in MECs without the need for expensive cathodes.
DOI: 10.1021/acs.estlett.7b00392
2017
Cited 224 times
Low Energy Desalination Using Battery Electrode Deionization
New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.
DOI: 10.1016/j.biortech.2014.11.001
2015
Cited 212 times
COD removal characteristics in air-cathode microbial fuel cells
Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions fit first-order kinetics, but rate constants varied with circuit resistance. With filtered WW (100Ω), the rate constant was 0.18h(-)(1), which was higher than acetate or filtered WW with an open circuit (0.10h(-)(1)), but CEs were much lower (15-24%) than acetate. With raw WW (100Ω), COD removal proceeded in two stages: a fast removal stage with high current production, followed by a slower removal with little current. While using MFCs increased COD removal rate due to current generation, secondary processes will be needed to reduce COD to levels suitable for discharge.
DOI: 10.1016/j.ijhydene.2010.06.077
2010
Cited 211 times
A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters
Microbial fuel (MFCs) and electrolysis cells (MECs) can be used to recover energy directly as electricity or hydrogen from organic matter. Organic removal efficiencies and values of the different energy products were compared for MFCs and MECs fed winery or domestic wastewater. TCOD removal (%) and energy recoveries (kWh/kg-COD) were higher for MFCs than MECs with both wastewaters. At a cost of $4.51/kg-H2 for winery wastewater and $3.01/kg-H2 for domestic wastewater, the hydrogen produced using MECs cost less than the estimated merchant value of hydrogen ($6/kg-H2). 16S rRNA clone libraries indicated the predominance of Geobacter species in anodic microbial communities in MECs for both wastewaters, suggesting low current densities were the result of substrate limitations. The results of this study show that energy recovery and organic removal from wastewater are more effective with MFCs than MECs, but that hydrogen production from wastewater fed MECs can be cost effective.
DOI: 10.1016/j.biortech.2010.05.017
2011
Cited 207 times
Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts
To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1mW/m(3). Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance.
DOI: 10.1016/j.elecom.2010.11.011
2011
Cited 202 times
Analysis of polarization methods for elimination of power overshoot in microbial fuel cells
Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as “power overshoot”. Linear sweep voltammetry (LSV, 1 mV s− 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems.
DOI: 10.1038/ismej.2014.82
2014
Cited 197 times
Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<-414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism.
DOI: 10.1016/j.biortech.2011.12.038
2012
Cited 194 times
Phosphate recovery as struvite within a single chamber microbial electrolysis cell
An energy efficient method of concurrent hydrogen gas and struvite (MgNH4PO4·6H2O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite-precipitation cell (MESC). The MESC cathodes were either stainless steel 304 mesh or flat plates. Phosphate removal ranged from 20% to 40%, with higher removals obtained using mesh cathodes than with flat plates. Cathode accumulated crystals were verified as struvite using a scanning electron microscope capable of energy dispersive spectroscopy (SEM–EDS). Crystal accumulation did not affect the rate of hydrogen production in struvite reactors. The rate of struvite crystallization (g/m2-h) and hydrogen production (m3/m3-d) were shown to be dependent on applied voltage and cathode material. Overall energy efficiencies (substrate and electricity) were high (73 ± 4%) and not dependent on applied voltage. These results show that MESCs may be useful both as a method for hydrogen gas and struvite production.
DOI: 10.1039/c5ew00289c
2016
Cited 190 times
Electrochemical technologies for wastewater treatment and resource reclamation
Electrochemical processes that can be used for wastewater treatment and resource reclamation are reviewed with suggestions for future research directions.
DOI: 10.1021/es405029y
2014
Cited 182 times
Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black
Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9–16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations.
DOI: 10.1002/cssc.201100604
2012
Cited 181 times
Essential Data and Techniques for Conducting Microbial Fuel Cell and other Types of Bioelectrochemical System Experiments
Microbial fuel cells (MFCs) and other bioelectrochemical systems are new technologies that require expertise in a variety of technical areas, ranging from electrochemistry to biological wastewater treatment. There are certain data and critical information that should be included in every MFC study, such as specific surface area of the electrodes, solution conductivity, and power densities normalized to electrode surface area and volumes. Electrochemical techniques such as linear sweep voltammetry can be used to understand the performance of the MFC, but extremely slow scans are required for these biological systems compared to more traditional fuel cells. In this Minireview, the critical information needed for MFC studies is provided with examples of how results can be better conveyed through a full description of materials, the use of proper controls, and inclusion of a more complete electrochemical analysis.
DOI: 10.1016/j.biotechadv.2015.03.002
2015
Cited 177 times
A logical data representation framework for electricity-driven bioproduction processes
Microbial electrosynthesis (MES) is a process that uses electricity as an energy source for driving the production of chemicals and fuels using microorganisms and CO2 or organics as carbon sources. The development of this highly interdisciplinary technology on the interface between biotechnology and electrochemistry requires knowledge and expertise in a variety of scientific and technical areas. The rational development and commercialization of MES can be achieved at a faster pace if the research data and findings are reported in appropriate and uniformly accepted ways. Here we provide a framework for reporting on MES research and propose several pivotal performance indicators to describe these processes. Linked to this study is an online tool to perform necessary calculations and identify data gaps. A key consideration is the calculation of effective energy expenditure per unit product in a manner enabling cross comparison of studies irrespective of reactor design. We anticipate that the information provided here on different aspects of MES ranging from reactor and process parameters to chemical, electrochemical, and microbial functionality indicators will assist researchers in data presentation and ease data interpretation. Furthermore, a discussion on secondary MES aspects such as downstream processing, process economics and life cycle analysis is included.
DOI: 10.1021/es401722j
2013
Cited 174 times
Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance
Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts in microbial fuel cells (MFCs). AC powders were characterized in terms of surface chemistry and porosity, and their kinetic activities were compared to carbon black and platinum catalysts in rotating disk electrode (RDE) tests. Cathodes using the coal-derived AC had the highest power densities in MFCs (1620 ± 10 mW m–2). Peat-based AC performed similarly in MFC tests (1610 ± 100 mW m–2) and had the best catalyst performance, with an onset potential of Eonset = 0.17 V, and n = 3.6 electrons used for oxygen reduction. Hardwood based AC had the highest number of acidic surface functional groups and the poorest performance in MFC and catalysis tests (630 ± 10 mW m–2, Eonset = −0.01 V, n = 2.1). There was an inverse relationship between onset potential and quantity of strong acid (pKa < 8) functional groups, and a larger fraction of microporosity was negatively correlated with power production in MFCs. Surface area alone was a poor predictor of catalyst performance, and a high quantity of acidic surface functional groups was determined to be detrimental to oxygen reduction and cathode performance.
DOI: 10.1039/c7ee03026f
2018
Cited 172 times
Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity
Low-grade heat from geothermal sources and industrial plants is a significant source of sustainable power that has great potential to be converted to electricity.
DOI: 10.1021/acs.est.5b00175
2015
Cited 171 times
Temporal-Spatial Changes in Viabilities and Electrochemical Properties of Anode Biofilms
Sustained current generation by anodic biofilms is a key element for the longevity and success of bioelectrochemical systems. Over time, however, inactive or dead cells can accumulate within the anode biofilm, which can be particularly detrimental to current generation. Mixed and pure culture (Geobacter anodireducens) biofilms were examined here relative to changes in electrochemical properties over time. An analysis of the three-dimensional metabolic structure of the biofilms over time showed that both types of biofilms developed a live outer-layer that covered a dead inner-core. This two-layer structure appeared to be mostly a result of relatively low anodic current densities compared to other studies. During biofilm development, the live layer reached a constant thickness, whereas dead cells continued to accumulate near the electrode surface. This result indicated that only the live outer-layer of biofilm was responsible for current generation and suggested that the dead inner-layer continued to function as an electrically conductive matrix. Analysis of the electrochemical properties and biofilm thickness revealed that the diffusion resistance measured using electrochemical impedance spectroscopy might not be due to acetate or proton diffusion limitations to the live layer, but rather electron-mediator diffusion.
DOI: 10.1021/es404690q
2014
Cited 164 times
Microbial Community Composition Is Unaffected by Anode Potential
There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (−0.25, −0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of −0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials.
DOI: 10.1039/c4ee02824d
2015
Cited 163 times
A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power
A thermally regenerative ammonia-based battery that was driven by metal ammine complex formation and ammonia concentration gradients to create voltage, showed efficient conversion of low-grade thermal energy into electrical power.
DOI: 10.1039/c4cp03076a
2014
Cited 162 times
Specific ion effects on membrane potential and the permselectivity of ion exchange membranes
Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.
DOI: 10.1021/es504392n
2014
Cited 160 times
A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-Organic Strength Solutions
A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1–2 kWh/m3).
DOI: 10.1016/j.watres.2018.10.022
2019
Cited 127 times
Evaluating a multi-panel air cathode through electrochemical and biotic tests
To scale up microbial fuel cells (MFCs), larger cathodes need to be developed that can use air directly, rather than dissolved oxygen, and have good electrochemical performance. A new type of cathode design was examined here that uses a “window-pane” approach with fifteen smaller cathodes welded to a single conductive metal sheet to maintain good electrical conductivity across the cathode with an increase in total area. Abiotic electrochemical tests were conducted to evaluate the impact of the cathode size (exposed areas of 7 cm2, 33 cm2, and 6200 cm2) on performance for all cathodes having the same active catalyst material. Increasing the size of the exposed area of the electrodes to the electrolyte from 7 cm2 to 33 cm2 (a single cathode panel) decreased the cathode potential by 5%, and a further increase in size to 6200 cm2 using the multi-panel cathode reduced the electrode potential by 55% (at 0.6 A m−2), in a 50 mM phosphate buffer solution (PBS). In 85 L MFC tests with the largest cathode using wastewater as a fuel, the maximum power density based on polarization data was 0.083 ± 0.006 W m−2 using 22 brush anodes to fully cover the cathode, and 0.061 ± 0.003 W m−2 with 8 brush anodes (40% of cathode projected area) compared to 0.304 ± 0.009 W m−2 obtained in the 28 mL MFC. Recovering power from large MFCs will therefore be challenging, but several approaches identified in this study can be pursued to maintain performance when increasing the size of the electrodes.
DOI: 10.1016/j.watres.2022.118208
2022
Cited 62 times
Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater
Microbial fuel cells (MFCs) can generate electrical energy from the oxidation of the organic matter, but they must be demonstrated at large scales, treat real wastewaters, and show the required performance needed at a site to provide a path forward for this technology. Previous pilot-scale studies of MFC technology have relied on systems with aerated catholytes, which limited energy recovery due to the energy consumed by pumping air into the catholyte. In the present study, we developed, deployed, and tested an 850 L (1400 L total liquid volume) air-cathode MFC treating domestic-type wastewater at a centralized wastewater treatment facility. The wastewater was processed over a hydraulic retention time (HRT) of 12 h through a sequence of 17 brush anode modules (11 m2 total projected anode area) and 16 cathode modules, each constructed using two air-cathodes (0.6 m2 each, total cathode area of 20 m2) with the air side facing each other to allow passive air flow. The MFC effluent was further treated in a biofilter (BF) to decrease the organic matter content. The field test was conducted for over six months to fully characterize the electrochemical and wastewater treatment performance. Wastewater quality as well as electrical energy production were routinely monitored. The power produced over six months by the MFC averaged 0.46 ± 0.35 W (0.043 W m-2 normalized to the cross-sectional area of an anode) at a current of 1.54 ± 0.90 A with a coulombic efficiency of 9%. Approximately 49 ± 15 % of the chemical oxygen demand (COD) was removed in the MFC alone as well as a large amount of the biochemical oxygen demand (BOD5) (70%) and total suspended solid (TSS) (48%). In the combined MFC/BF process, up to 91 ± 6 % of the COD and 91 % of the BOD5 were removed as well as certain bacteria (E. coli, 98.9%; fecal coliforms, 99.1%). The average effluent concentration of nitrate was 1.6 ± 2.4 mg L-1, nitrite was 0.17 ± 0.24 mg L-1 and ammonia was 0.4 ± 1.0 mg L-1. The pilot scale reactor presented here is the largest air-cathode MFC ever tested, generating electrical power while treating wastewater.
DOI: 10.1021/es950604g
1996
Cited 302 times
Settling Velocities of Fractal Aggregates
Aggregates generated in water and wastewater treatment systems and those found in natural systems are fractal and therefore have different scaling properties than assumed in settling velocity calculations using Stokes' law. In order to demonstrate that settling velocity models based on impermeable spheres do not accurately relate aggregate size, porosity and settling velocity for highly porous fractal aggregates, we generated fractal aggregates by coagulation of latex microspheres in paddle mixers and analyzed each aggregate individually for its size, porosity, and settling velocity. Settling velocities of these aggregates were on average 4−8.3 times higher than those predicted using either an impermeable sphere model (Stokes' law) or a permeable sphere model that specified aggregate permeability for a homogeneous distribution of particles within an aggregate. Fractal dimensions (D) derived from size−porosity relationships for the three batches of aggregates were 1.78 ± 0.10, 2.19 ± 0.12 and 2.25 ± 0.10. These fractal dimensions were used to predict power law relationships between aggregate size and settling velocity based on Stokes' law. When it was assumed that the the drag coefficient, CD, was constant and fixed at its value of CD = 24/Re for the creeping flow region (Re ≪ 1), predicted slopes of size and settling velocity were in agreement with only the data sets where D > 2. As a result, when D < 2, aggregate porosities will be overestimated and fractal dimensions will be calculated incorrectly from settling velocity data and Stokes' law.
DOI: 10.1021/es0510515
2005
Cited 270 times
Inhibition of Biohydrogen Production by Undissociated Acetic and Butyric Acids
Glucose fermentation to hydrogen results in the production of acetic and butyric acids. The inhibitory effect of these acids on hydrogen yield was examined by either adding these acids into the feed of continuous flow reactors (external acids), or by increasing glucose concentrations to increase the concentrations of acids produced by the bacteria (self-produced). Acids added to the feed at a concentration of 25 mM decreased H2 yields by 13% (acetic) and 22% (butyric), and 60 mM (pH 5.0) of either acid decreased H2 production by >93% (undissociated acid concentrations). H2 yields were constant at 2.0 ± 0.2 mol H2/mol glucose for an influent glucose concentration of 10−30 g/L. At 40 g glucose/L, H2 yields decreased to 1.6 ± 0.1 mol H2/mol glucose, and a switch to solventogenesis occurred. A total undissociated acid concentration of 19 mM (self-produced acids) was found to be a threshold concentration for significantly decreasing H2 yields and initiating solventogenesis. Hydrogen yields were inhibited more by self-produced acids (produced at high glucose feed concentrations) than by similar concentrations of externally added acids (lower glucose feed concentrations). These results show the reason hydrogen yields can be maximized by using lower glucose feed concentrations is that the concentrations of self-produced volatile acids (particularly butyric acid) are minimized.
DOI: 10.1021/es00024a007
1991
Cited 269 times
Fractal dimensions of aggregates determined from steady-state size distributions
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTFractal dimensions of aggregates determined from steady-state size distributionsQing Jiang and Bruce E. LoganCite this: Environ. Sci. Technol. 1991, 25, 12, 2031–2038Publication Date (Print):December 1, 1991Publication History Published online1 May 2002Published inissue 1 December 1991https://doi.org/10.1021/es00024a007Request reuse permissionsArticle Views1558Altmetric-Citations225LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit PDF (996 KB) Get e-Alertsclose Get e-Alerts
DOI: 10.2175/106143005x73046
2006
Cited 256 times
Production of Electricity from Proteins Using a Microbial Fuel Cell
Electricity generation was examined from proteins and a protein-rich wastewater using a single chamber microbial fuel cell (MFC). The maximum power densities achieved were 354 +/- 10 mW/m2 using bovine serum albumin (BSA) and 269 +/- 14 mW/m2 using peptone (1100 mg/L BSA and 300 mg/L peptone). The recovery of organic matter as electricity, defined as the Coulombic efficiency (CE), was comparable to that obtained with other substrates with CE = 20.6% for BSA and CE = 6.0% for peptone. A meat packing wastewater (MPW), diluted to 1420 mg/L chemical oxygen demand, produced 80 +/- 1 mW/m2, and power was increased by 33% by adding salt (300 mg/L sodium chloride) to increase solution conductivity. A wastewater inoculum generated 33% less power than the MPW inoculum. The MFC was an effective method of wastewater treatment, demonstrated by >86% of biochemical oxygen demand and total organic carbon removal from wastewater.
DOI: 10.1002/bit.21687
2007
Cited 253 times
Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater
Abstract Ammonia losses during swine wastewater treatment were examined using single‐ and two‐chambered microbial fuel cells (MFCs). Ammonia removal was 60% over 5 days for a single‐chamber MFC with the cathode exposed to air (air–cathode), versus 69% over 13 days from the anode chamber in a two‐chamber MFC with a ferricyanide catholyte. In both types of systems, ammonia losses were accelerated with electricity generation. For the air–cathode system, our results suggest that nitrogen losses during electricity generation were increased due to ammonia volatilization with conversion of ammonium ion to the more volatile ammonia species as a result of an elevated pH near the cathode (where protons are consumed). This loss mechanism was supported by abiotic tests (applied voltage of 1.1 V). In a two‐chamber MFC, nitrogen losses were primarily due to ammonium ion diffusion through the membrane connecting the anode and cathode chambers. This loss was higher with electricity generation as the rate of ammonium transport was increased by charge transfer across the membrane. Ammonia was not found to be used as a substrate for electricity generation, as intermittent ammonia injections did not produce power. The ammonia‐oxidizing bacterium Nitrosomonas europaea was found on the cathode electrode of the single‐chamber system, supporting evidence of biological nitrification, but anaerobic ammonia‐oxidizing bacteria were not detected by molecular analyses. It is concluded that ammonia losses from the anode chamber were driven primarily by physical–chemical factors that are increased with electricity generation, although some losses may occur through biological nitrification and denitrification. Biotechnol. Bioeng. 2008;99: 1120–1127. © 2007 Wiley Periodicals, Inc.
DOI: 10.1021/es9913176
2000
Cited 252 times
Probing Bacterial Electrosteric Interactions Using Atomic Force Microscopy
Atomic force microscopy (AFM) was used to probe the effects of pH, ionic strength, and the presence of bacterial surface polymers on interaction forces between individual, negatively charged bacteria and silicon nitride. Bacterial surface polymers dominated interactions between bacteria and AFM silicon nitride tips. The measured forces were represented well by an electrosteric repulsion model accounting for repulsion between the tip and bacterial polymers but were much larger in magnitude and extended over longer distances (100's of nanometers) than predicted by DLVO theory. The equilibrium length (Lo) of the polymers was allowed to vary with solution chemistry to account for intramolecular electrostatic interactions between individual polymer units. The effects of the variables pH and ionic strength on bacterial interaction forces were investigated independently. Pseudomonas putida KT2442 was studied in 1 mM MOPS buffer at pH values of 2.2, 4.75, 7.00, and 8.67. Burkholderia cepacia G4 was studied in 1 mM MOPS buffer at pH values of 2.2, 4.75, and 6.87. Then, the pH was held constant at 4.5 or 4.75, and the ionic strength was studied in 0.01, 1, or 100 mM MOPS buffer (for each microbe). For KT2442 (in 1 mM MOPS buffer), Lo increased from 230 to 750 nm as pH increased from 4.75 to 8.67. For G4 (in 1 mM MOPS buffer), Lo increased from 350 nm at pH 2.2 to 1040 nm at pH 7.0. Varying the ionic strength between 0.01 and 100 mM did not affect the equilibrium length of the polymers nearly as much as pH. Partially removing polysaccharides from the bacterial surfaces resulted in lower repulsive forces that decayed much more rapidly. The magnitude of the measured forces in these experiments and the equilibrium lengths predicted by the electrosteric model are comparable to other force measurements and size estimates on polymers and polysaccharides.
DOI: 10.1061/(asce)0733-9372(1995)121:12(869)
1995
Cited 250 times
Clarification of Clean-Bed Filtration Models
Clean-bed filtration models are frequently used to make engineering calculations on aquasol removal in filters. They consist of a filtration equation, derived from a mass balance around a collector, a single-collector collision efficiency, and an empirically derived sticking coefficient. In order to be correctly applied and referenced, the two most commonly used models, the Yao model and the Rajagopalan and Tien (RT) model, require additional clarification. The filtration equation used in the Yao model has a different form than that of an aerosol counterpart due to assumptions made in choosing a reference velocity in the system. The RT model, as originally published, had variables hidden within constants and contained typographic errors. In this paper we identify the differences in the Yao and aerosol filtration model derivations, correctly present the RT model, and compare model predictions with particle removals reported in laboratory columns.
DOI: 10.1016/j.watres.2005.07.021
2005
Cited 242 times
Increased biological hydrogen production with reduced organic loading
An experimental matrix consisting of reactor hydraulic retention time (HRT) and glucose loading rate was tested to understand the effect of organic loading on H2 production in chemostat reactors. In order to vary the glucose loading rate over a range of 0.5–18.9 g/h, the glucose concentration in the feed was varied from 2.5 to 10 g COD/L under conditions where the HRT varied from 1 to 10 h (30 °C, pH=5.5). Decreasing the glucose loading rate over this range increased the hydrogen yield from 1.7 to 2.8 mol-H2/mol-glucose. High yields of hydrogen were consistent with a high molar acetate:butyrate ratio of 1.08:1 as more hydrogen is produced with acetate as a product (4 mol-H2/mol-acetate) than with butyrate (2 mol-H2/mol-butyrate). It was thought that the decrease in yield with organic loading rate resulted from an overall decreased rate of hydrogen production. As the rate of gas production is reduced, H2 supersaturation in the liquid phase is likely reduced, relieving inhibition due to H2. Flocculation was also an important factor in the performance of the reactor. At the 5–10 g COD/L influent glucose concentrations, substantial flocculation was observed particularly as the feeding rate was increased due to a reduction in the HRT from 10 to 2.5 h. At the HRT of 2.5 h, biomass concentrations reached as much as 25 g/L. The flocculant nature of the biomass allowed reactor operation at low HRTs with steady H2 production and >90% glucose removal. However, when the HRT was reduced to 1 h at a glucose feed concentration of 2.5 g COD/L, there was little flocculation evident resulting in wash-out of the culture. These results suggest that hydrogen yields will be optimized for more dilute feeds and lower organic loading rates than have typically been used in biohydrogen reactor studies.