ϟ

Angelos Michaelides

Here are all the papers by Angelos Michaelides that you can download and read on OA.mg.
Angelos Michaelides’s last known institution is . Download Angelos Michaelides PDFs here.

Claim this Profile →
DOI: 10.1103/physrevb.83.195131
2011
Cited 3,743 times
Van der Waals density functionals applied to solids
The van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] is a promising approach for including dispersion in approximate density functional theory exchange-correlation functionals. Indeed, an improved description of systems held by dispersion forces has been demonstrated in the literature. However, despite many applications, standard general tests on a broad range of materials are lacking. Here we calculate the lattice constants, bulk moduli, and atomization energies for a range of solids using the original vdW-DF and several of its offspring. We find that the original vdW-DF overestimates lattice constants in a similar manner to how it overestimates binding distances for gas phase dimers. However, some of the modified vdW functionals lead to average errors which are similar to those of PBE or better. Likewise, atomization energies that are slightly better than from PBE are obtained from the modified vdW-DFs. Although the tests reported here are for "hard" solids, not normally materials for which dispersion forces are thought to be important, we find a systematic improvement in cohesive properties for the alkali metals and alkali halides when non-local correlations are accounted for.
DOI: 10.1088/0953-8984/22/2/022201
2009
Cited 2,424 times
Chemical accuracy for the van der Waals density functional
The non-local van der Waals density functional (vdW-DF) of Dion et al (2004 Phys. Rev. Lett. 92 246401) is a very promising scheme for the efficient treatment of dispersion bonded systems. We show here that the accuracy of vdW-DF can be dramatically improved both for dispersion and hydrogen bonded complexes through the judicious selection of its underlying exchange functional. New and published exchange functionals are identified that deliver much better than chemical accuracy from vdW-DF for the S22 benchmark set of weakly interacting dimers and for water clusters. Improved performance for the adsorption of water on salt is also obtained.
DOI: 10.1063/1.4754130
2012
Cited 963 times
Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory
Electron dispersion forces play a crucial role in determining the structure and properties of biomolecules, molecular crystals, and many other systems. However, an accurate description of dispersion is highly challenging, with the most widely used electronic structure technique, density functional theory (DFT), failing to describe them with standard approximations. Therefore, applications of DFT to systems where dispersion is important have traditionally been of questionable accuracy. However, the last decade has seen a surge of enthusiasm in the DFT community to tackle this problem and in so-doing to extend the applicability of DFT-based methods. Here we discuss, classify, and evaluate some of the promising schemes to emerge in recent years. A brief perspective on the outstanding issues that remain to be resolved and some directions for future research are also provided.
DOI: 10.1021/acs.chemrev.5b00744
2016
Cited 654 times
Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations
The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.
DOI: 10.1063/1.4944633
2016
Cited 581 times
Perspective: How good is DFT for water?
Kohn-Sham density functional theory (DFT) has become established as an indispensable tool for investigating aqueous systems of all kinds, including those important in chemistry, surface science, biology and the earth sciences. Nevertheless, many widely used approximations for the exchange-correlation (XC) functional describe the properties of pure water systems with an accuracy that is not fully satisfactory. The explicit inclusion of dispersion interactions generally improves the description, but there remain large disagreements between the predictions of different dispersion-inclusive methods. We present here a review of DFT work on water clusters, ice structures and liquid water, with the aim of elucidating how the strengths and weaknesses of different XC approximations manifest themselves across this variety of water systems. Our review highlights the crucial role of dispersion in describing the delicate balance between compact and extended structures of many different water systems, including the liquid. By referring to a wide range of published work, we argue that the correct description of exchange-overlap interactions is also extremely important, so that the choice of semi-local or hybrid functional employed in dispersion-inclusive methods is crucial. The origins and consequences of beyond-2-body errors of approximate XC functionals are noted, and we also discuss the substantial differences between different representations of dispersion. We propose a simple numerical scoring system that rates the performance of different XC functionals in describing water systems, and we suggest possible future developments.
DOI: 10.1038/nmat3354
2012
Cited 569 times
A molecular perspective of water at metal interfaces
Water/solid interfaces are relevant to a broad range of physicochemical phenomena and technological processes such as corrosion, lubrication, heterogeneous catalysis and electrochemistry. Although many fields have contributed to rapid progress in the fundamental knowledge of water at interfaces, detailed molecular-level understanding of water/solid interfaces comes mainly from studies on flat metal substrates. These studies have recently shown that a remarkably rich variety of structures form at the interface between water and even seemingly simple flat surfaces. In this Review we discuss the most exciting work in this area, in particular the emerging physical insight and general concepts about how water binds to metal surfaces. We also provide a perspective on outstanding problems, challenges and open questions.
DOI: 10.1021/acs.chemrev.6b00045
2016
Cited 554 times
Water at Interfaces
The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.
DOI: 10.1021/ja027366r
2003
Cited 537 times
Identification of General Linear Relationships between Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces
The activation energy to reaction is a key quantity that controls catalytic activity. Having used ab inito calculations to determine an extensive and broad ranging set of activation energies and enthalpy changes for surface-catalyzed reactions, we show that linear relationships exist between dissociation activation energies and enthalpy changes. Known in the literature as empirical Brønsted-Evans-Polanyi (BEP) relationships, we identify and discuss the physical origin of their presence in heterogeneous catalysis. The key implication is that merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.
DOI: 10.1038/nchem.2915
2018
Cited 490 times
Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation
The recent availability of shale gas has led to a renewed interest in C–H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C–H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C–H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C–H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C–H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit. A renewed interest in C–H bond activation has developed on account of the recent increased availability of shale gas. Now, using a combination of surface science, microscopy, theory and nanoparticle studies, the ability of coke-resistant Pt/Cu single-atom alloys to efficiently activate C–H bonds in alkanes has been demonstrated under realistic catalytic conditions.
DOI: 10.1021/acs.chemrev.5b00674
2016
Cited 451 times
Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges
Nuclear quantum effects influence the structure and dynamics of hydrogen-bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory, and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in water's properties. These have been combined with theoretical developments such as the introduction of the principle of competing quantum effects that allows the subtle interplay of water's quantum effects and their manifestation in experimental observables to be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in water's isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in this area of research.
DOI: 10.1103/physrevb.80.033407
2009
Cited 432 times
Stone-Wales defects in graphene and other planar<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>-bonded materials
Density functional theory and quantum Monte Carlo simulations reveal that the structure of the Stone-Wales (SW) defect in graphene is more complex than hitherto appreciated. Rather than being a simple in-plane transformation of two carbon atoms, out-of-plane wavelike defect structures that extend over several nanometers are predicted. Equivalent wavelike SW reconstructions are predicted for hexagonal boron-nitride and polycyclic aromatic hydrocarbons above a critical size, demonstrating the relevance of these predictions to $s{p}^{2}$-bonded materials in general.
DOI: 10.1073/pnas.1016653108
2011
Cited 368 times
Quantum nature of the hydrogen bond
Hydrogen bonds are weak, generally intermolecular bonds, which hold much of soft matter together as well as the condensed phases of water, network liquids, and many ferroelectric crystals. The small mass of hydrogen means that they are inherently quantum mechanical in nature, and effects such as zero-point motion and tunneling must be considered, though all too often these effects are not considered. As a prominent example, a clear picture for the impact of quantum nuclear effects on the strength of hydrogen bonds and consequently the structure of hydrogen bonded systems is still absent. Here, we report ab initio path integral molecular dynamics studies on the quantum nature of the hydrogen bond. Through a systematic examination of a wide range of hydrogen bonded systems we show that quantum nuclear effects weaken weak hydrogen bonds but strengthen relatively strong ones. This simple correlation arises from a competition between anharmonic intermolecular bond bending and intramolecular bond stretching. A simple rule of thumb is provided that enables predictions to be made for hydrogen bonded materials in general with merely classical knowledge (such as hydrogen bond strength or hydrogen bond length). Our work rationalizes the influence of quantum nuclear effects, which can result in either weakening or strengthening of the hydrogen bonds, and the corresponding structures, across a broad range of hydrogen bonded materials. Furthermore, it highlights the need to allow flexible molecules when anharmonic potentials are used in force field-based studies of quantum nuclear effects.
DOI: 10.1103/physrevlett.90.216102
2003
Cited 366 times
General Model for Water Monomer Adsorption on Close-Packed Transition and Noble Metal Surfaces
Ab initio density functional theory has been used to investigate the adsorption of H2O on several close-packed transition and noble metal surfaces. A remarkably common binding mechanism has been identified. On every surface H2O binds preferentially at an atop adsorption site with the molecular dipole plane nearly parallel to the surface. This binding mode favors interaction of the H2O 1b(1) delocalized molecular orbital with surface wave functions.
DOI: 10.1038/nmat1940
2007
Cited 337 times
Ice nanoclusters at hydrophobic metal surfaces
DOI: 10.1021/nl502837d
2014
Cited 333 times
Friction of Water on Graphene and Hexagonal Boron Nitride from <i>Ab Initio</i> Methods: Very Different Slippage Despite Very Similar Interface Structures
Friction is one of the main sources of dissipation at liquid water/solid interfaces. Despite recent progress, a detailed understanding of water/solid friction in connection with the structure and energetics of the solid surface is lacking. Here we show for the first time that \textit{ab initio} molecular dynamics can be used to unravel the connection between the structure of nanoscale water and friction for liquid water in contact with graphene and with hexagonal boron nitride. We find that whilst the interface presents a very similar structure between the two sheets, the friction coefficient on boron nitride is $\approx 3$ times larger than that on graphene. This comes about because of the greater corrugation of the energy landscape on boron nitride arising from specific electronic structure effects. We discuss how a subtle dependence of the friction on the atomistic details of a surface, that is not related to its wetting properties, may have a significant impact on the transport of water at the nanoscale, with implications for the development of membranes for desalination and for osmotic power harvesting.
DOI: 10.1103/physrevb.86.245405
2012
Cited 250 times
Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding
The adsorption of aromatic molecules on metal surfaces plays a key role in condensed matter physics and functional materials. Depending on the strength of the interaction between the molecule and the surface, the binding is typically classified as either physisorption or chemisorption. Van der Waals (vdW) interactions contribute significantly to the binding in physisorbed systems, but the role of the vdW energy in chemisorbed systems remains unclear. Here we study the interaction of benzene with the (111) surface of transition metals, ranging from weak adsorption (Ag and Au) to strong adsorption (Pt, Pd, Ir, and Rh). When vdW interactions are accurately accounted for, the barrier to adsorption predicted by standard density-functional theory (DFT) calculations essentially vanishes, producing a metastable precursor state on Pt and Ir surfaces. Notably, vdW forces contribute more to the binding of covalently bonded benzene than they do when benzene is physisorbed. Comparison to experimental data demonstrates that some of the recently developed methods for including vdW interactions in DFT allow quantitative treatment of both weakly and strongly adsorbed aromatic molecules on metal surfaces, extending the already excellent performance found for molecules in the gas phase.
DOI: 10.1126/science.aai8034
2017
Cited 246 times
Active sites in heterogeneous ice nucleation—the example of K-rich feldspars
From dust to ice How does ice form on the surfaces of aerosol particles? The process is important for climate and atmospheric properties but poorly understood at the molecular level, in part because the nature of the sites where ice growth begins is unclear. Kiselev et al. used electron microscopy and computer simulations to study the deposition of aligned ice crystals on feldspar, a major component of mineral dust (see the Perspective by Murray). Surface defects of the feldspar were responsible for its high ice-nucleation efficiency. Science , this issue p. 367 ; see also p. 346
DOI: 10.1016/j.surfrep.2015.07.001
2015
Cited 242 times
Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides
The oxidation and corrosion of metals are fundamental problems in materials science and technology that have been studied using a large variety of experimental and computational techniques. Here we review some of the recent studies that have led to significant advances in our atomic-level understanding of copper oxide, one of the most studied and best understood metal oxides. We show that a good atomistic understanding of the physical characteristics of cuprous (Cu2O) and cupric (CuO) oxide and of some key processes of their formation has been obtained. Indeed, the growth of the oxide has been shown to be epitaxial with the surface and to proceed, in most cases, through the formation of oxide nano-islands which, with continuous oxygen exposure, grow and eventually coalesce. We also show how electronic structure calculations have become increasingly useful in helping to characterise the structures and energetics of various Cu oxide surfaces. However a number of challenges remain. For example, it is not clear under which conditions the oxidation of copper in air at room temperature (known as native oxidation) leads to the formation of a cuprous oxide film only, or also of a cupric overlayer. Moreover, the atomistic details of the nucleation of the oxide islands are still unknown. We close our review with a brief perspective on future work and discuss how recent advances in experimental techniques, bringing greater temporal and spatial resolution, along with improvements in the accuracy, realism and timescales achievable with computational approaches make it possible for these questions to be answered in the near future.
DOI: 10.1038/nmat4793
2016
Cited 241 times
Structure of a model TiO2 photocatalytic interface
The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis.
DOI: 10.1103/physrevb.84.033402
2011
Cited 231 times
Adsorption and diffusion of water on graphene from first principles
Water monomer adsorption on graphene is examined with state-of-the-art electronic structure approaches. The adsorption energy determinations on this system from quantum Monte Carlo and the random-phase approximation yield small values of 100 meV. These benchmarks provide a deeper understanding of the reactivity of graphene that may underpin the development of improved more approximate methods enabling the accurate treatment of more complex processes at wet-carbon interfaces. As an example, we show how dispersion-corrected density functional theory, which we show gives a satisfactory description of this adsorption system, predicts that water undergoes ultra-fast diffusion on graphene at low temperatures.
DOI: 10.1021/acs.jpclett.8b01888
2018
Cited 218 times
Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys
We discuss a simple yet effective strategy for escaping traditional linear scaling relations in heterogeneous catalysis with highly dilute bimetallic alloys known as single-atom alloys (SAAs). These systems, in which a reactive metal is atomically dispersed in a less reactive host, were first demonstrated with the techniques of surface science to be active and selective for hydrogenation reactions. Informed by these early results, PdCu and PtCu SAA nanoparticle hydrogenation catalysts were shown to work under industrially relevant conditions. To efficiently survey the many potential metal combinations and reactions, simulation is crucial for making predictions about reactivity and guiding experimental focus on the most promising candidate materials. This recent work reveals that the high surface chemical heterogeneity of SAAs can result in significant deviations from Brønsted–Evans–Polanyi scaling relationships for many key reaction steps. These recent insights into SAAs and their ability to break linear scaling relations motivate discovery of novel alloy catalysts.
DOI: 10.1103/physrevlett.107.185701
2011
Cited 201 times
Hydrogen Bonds and van der Waals Forces in Ice at Ambient and High Pressures
The first principles methods, density-functional theory and quantum Monte Carlo, have been used to examine the balance between van der Waals (vdW) forces and hydrogen bonding in ambient and high-pressure phases of ice. At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the transition pressures between the crystalline ice phases. An important consequence, likely to be of relevance to molecular crystals in general, is that transition pressures obtained from density-functional theory exchange-correlation functionals which neglect vdW forces are greatly overestimated.
DOI: 10.1126/science.abg8389
2021
Cited 194 times
First-principles design of a single-atom–alloy propane dehydrogenation catalyst
Rhodium atoms for alkane dehydrogenation Nanoparticles of rhodium dispersed on metal oxides are generally poor catalysts for alkane dehydrogenation because the reactants bind too strongly to the metal. Hannagan et al. performed first-principle calculations indicating that single rhodium atoms in a copper surface should be stable and selective for conversion of propane to propene and hydrogen. Model studies of single rhodium atoms embedded in a copper (111) surface revealed a very high selectivity to propene and high resistance to the formation of surface carbon that would deactivate the catalyst. Science , abg8389, this issue p. 1444
DOI: 10.1021/jacs.5b08748
2015
Cited 183 times
The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity
What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the hydrophobicity and the morphology of the surface. Nucleation rates have been obtained by brute-force molecular dynamics simulations of coarse-grained water on top of different surfaces of a model fcc crystal, varying the water-surface interaction and the surface lattice parameter. It turns out that the lattice mismatch of the surface with respect to ice, customarily regarded as the most important requirement for a good ice nucleating agent, is at most desirable but not a requirement. On the other hand, the balance between the morphology of the surface and its hydrophobicity can significantly alter the ice nucleation rate and can also lead to the formation of up to three different faces of ice on the same substrate. We have pinpointed three circumstances where heterogeneous ice nucleation can be promoted by the crystalline surface: (i) the formation of a water overlayer that acts as an in-plane template; (ii) the emergence of a contact layer buckled in an ice-like manner; and (iii) nucleation on compact surfaces with very high interaction strength. We hope that this extensive systematic study will foster future experimental work aimed at testing the physiochemical understanding presented herein.
DOI: 10.1063/1.4773901
2013
Cited 178 times
The role of van der Waals forces in water adsorption on metals
The interaction of water molecules with metal surfaces is typically weak and as a result van der Waals (vdW) forces can be expected to be of importance. Here we account for the systematic poor treatment of vdW forces in most popular density functional theory exchange-correlation functionals by applying accurate non-local vdW density functionals. We have computed the adsorption of a variety of exemplar systems including water monomer adsorption on Al(111), Cu(111), Cu(110), Ru(0001), Rh(111), Pd(111), Ag(111), Pt(111), and unreconstructed Au(111), and small clusters (up to 6 waters) on Cu(110). We show that non-local correlations contribute substantially to the water-metal bond in all systems, whilst water-water bonding is much less affected by non-local correlations. Interestingly non-local correlations contribute more to the adsorption of water on the reactive transition metal substrates than they do on the noble metals. The relative stability, adsorption sites, and adsorption geometries of competing water adstructures rarely differ when comparing results obtained with semi-local functionals and the non-local vdW density functionals, which explains the previous success of semi-local functionals in characterizing adsorbed water structures on a number of metal surfaces.
DOI: 10.1021/acs.jpclett.5b02400
2016
Cited 175 times
Controlling Hydrogen Activation, Spillover, and Desorption with Pd–Au Single-Atom Alloys
Key descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and the adsorption strength of H atoms to the surface. Using atomically resolved model systems of dilute Pd–Au surface alloys and density functional theory calculations, we determine key aspects of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to require contiguous Pd sites. H atoms preside at the Pd sites and desorb at temperatures significantly lower than those from pure Pd (175 versus 310 K). This facile H2 activation and weak adsorption of H atom intermediates are key requirements for active and selective hydrogenations. We also demonstrate weak adsorption of CO, a common catalyst poison, which is sufficient to force H atoms to spill over from Pd to Au sites, as evidenced by low-temperature H2 desorption.
DOI: 10.1103/physrevlett.116.025501
2016
Cited 174 times
Two Dimensional Ice from First Principles: Structures and Phase Transitions
Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here, we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression, the pentagonal structure becomes the most stable and persists up to ∼2 GPa, at which point the square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and the width.
DOI: 10.1063/1.4866175
2014
Cited 161 times
Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces
Exploring the role of van der Waals (vdW) forces on the adsorption of molecules on extended metal surfaces has become possible in recent years thanks to exciting developments in density functional theory (DFT). Among these newly developed vdW-inclusive methods, interatomic vdW approaches that account for the nonlocal screening within the bulk [V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, and A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012)] and improved nonlocal functionals [J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010)] have emerged as promising candidates to account efficiently and accurately for the lack of long-range vdW forces in most popular DFT exchange-correlation functionals. Here we have used these two approaches to compute benzene adsorption on a range of close-packed (111) surfaces upon which it either physisorbs (Cu, Ag, and Au) or chemisorbs (Rh, Pd, Ir, and Pt). We have thoroughly compared the performance between the two classes of vdW-inclusive methods and when available compared the results obtained with experimental data. By examining the computed adsorption energies, equilibrium distances, and binding curves we conclude that both methods allow for an accurate treatment of adsorption at equilibrium adsorbate-substrate distances. To this end, explicit inclusion of electrodynamic screening in the interatomic vdW scheme and optimized exchange functionals in the case of nonlocal vdW density functionals is mandatory. Nevertheless, some discrepancies are found between these two classes of methods at large adsorbate-substrate separations.
DOI: 10.1021/acscatal.8b00881
2018
Cited 160 times
Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts
Doping isolated single atoms of a platinum-group metal into the surface of a noble-metal host is sufficient to dramatically improve the activity of the unreactive host yet also facilitates the retention of the host's high reaction selectivity in numerous catalytic reactions. The atomically dispersed highly active sites in these single-atom alloy (SAA) materials are capable of performing facile bond activations allowing for the uptake of species onto the surface and the subsequent spillover of adspecies onto the noble host material, where selective catalysis can be performed. For example, SAAs have been shown to activate C–H bonds at low temperatures without coke formation, as well as selectively hydrogenate unsaturated hydrocarbons with excellent activity. However, to date, only a small subset of SAAs has been synthesized experimentally and it is unclear which metallic combinations may best catalyze which chemical reactions. To shed light on this issue, we have performed a widespread screening study using density functional theory to elucidate the fundamental adsorptive and catalytic properties of 12 SAAs (Ni-, Pd-, Pt-, and Rh-doped Cu(111), Ag(111), and Au(111)). We considered the interaction of these SAAs with a variety of adsorbates often found in catalysis and computed reaction mechanisms for the activation of several catalytically relevant species (H2, CH4, NH3, CH3OH, and CO2) by SAAs. Finally, we discuss the applicability of thermochemical linear scaling and the Brønsted–Evans–Polanyi relationship to SAA systems, demonstrating that SAAs combine weak binding with low activation energies to give enhanced catalytic behavior over their monometallic counterparts. This work will ultimately facilitate the discovery and development of SAAs, serving as a guide to experimentalists and theoreticians alike.
DOI: 10.1063/5.0005084
2020
Cited 158 times
An accurate and transferable machine learning potential for carbon
We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal surfaces, and defect structures with an accuracy approaching that of direct ab initio simulation, but at a significantly reduced cost. We combine structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained through an optimization of the many-body smooth overlap of atomic positions descriptor. We rigorously test the potential on lattice parameters, bond lengths, formation energies, and phonon dispersions of numerous carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces, and surface reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon [V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017)] with the high numerical accuracy necessary for crystalline graphene [Rowe et al., Phys. Rev. B 97, 054303 (2018)], thereby providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms of bulk and nanostructured carbon.
DOI: 10.1038/nmat4449
2015
Cited 156 times
Fast diffusion of water nanodroplets on graphene
Diffusion across surfaces generally involves motion on a vibrating but otherwise stationary substrate. Here, using molecular dynamics, we show that a layered material such as graphene opens up a new mechanism for surface diffusion whereby adsorbates are carried by propagating ripples in a motion similar to surfing. For water nanodroplets, we demonstrate that the mechanism leads to exceedingly fast diffusion that is 2-3 orders of magnitude faster than the self-diffusion of water molecules in liquid water. We also reveal the underlying principles that regulate this new mechanism for diffusion and show how it also applies to adsorbates other than water, thus opening up the prospect of achieving fast and controllable motion of adsorbates across material surfaces more generally.
DOI: 10.1103/physrevb.97.054303
2018
Cited 153 times
Development of a machine learning potential for graphene
We present an accurate interatomic potential for graphene, constructed using the Gaussian Approximation Potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies exist between the empirical interatomic potentials and the reference data - and amongst the empirical potentials themselves - the machine learning model introduced here provides exemplary performance in all of the tested areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of graphene Raman bands to experimental observations. We have made our potential freely available online at [http://www.libatoms.org].
DOI: 10.1038/s41570-019-0080-8
2019
Cited 148 times
Surface premelting of water ice
Frozen water has a quasi-liquid layer at its surface that exists even well below the bulk melting temperature; the formation of this layer is termed premelting. The nature of the premelted surface layer, its structure, thickness and how the layer changes with temperature have been debated for over 160 years, since Faraday first postulated the idea of a quasi-liquid layer on ice. Here, we briefly review current opinions and evidence on premelting at ice surfaces, gathering data from experiments and computer simulations. In particular, spectroscopy, microscopy and simulation have recently made important contributions to our understanding of this field. The identification of premelting inhomogeneities, in which portions of the surface are quasi-liquid-like and other parts of the surface are decorated with liquid droplets, is an intriguing recent development. Untangling the interplay of surface structure, supersaturation and surface defects is currently a major challenge. Similarly, understanding the coupling of surface structure with reactivity at the surface and crystal growth is a pressing problem in understanding the behaviour and formation of ice on Earth. A quasi-liquid layer on the surface of ice makes it slippery even below the bulk melting temperature. The nature of this premelted layer has long been debated, and this Review gathers experimental and theoretical data and discusses opinions and evidence on premelting at ice surfaces.
DOI: 10.1038/s41467-020-14854-4
2020
Cited 104 times
Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil–water separation
The surface free energy is one of the most fundamental properties of solids, hence, manipulating the surface energy and thereby the wetting properties of solids, has tremendous potential for various physical, chemical, biological as well as industrial processes. Typically, this is achieved by either chemical modification or by controlling the hierarchical structures of surfaces. Here we report a phenomenon whereby the wetting properties of vermiculite laminates are controlled by the hydrated cations on the surface and in the interlamellar space. We find that by exploiting this mechanism, vermiculite laminates can be tuned from superhydrophillic to hydrophobic simply by exchanging the cations; hydrophilicity decreases with increasing cation hydration free energy, except for lithium. Lithium, which has a higher hydration free energy than potassium, is found to provide a superhydrophilic surface due to its anomalous hydrated structure at the vermiculite surface. Building on these findings, we demonstrate the potential application of superhydrophilic lithium exchanged vermiculite as a thin coating layer on microfiltration membranes to resist fouling, and thus, we address a major challenge for oil-water separation technology.
DOI: 10.1073/pnas.2110077118
2021
Cited 90 times
Machine learning potentials for complex aqueous systems made simple
Simulation techniques based on accurate and efficient representations of potential energy surfaces are urgently needed for the understanding of complex systems such as solid-liquid interfaces. Here we present a machine learning framework that enables the efficient development and validation of models for complex aqueous systems. Instead of trying to deliver a globally optimal machine learning potential, we propose to develop models applicable to specific thermodynamic state points in a simple and user-friendly process. After an initial ab initio simulation, a machine learning potential is constructed with minimum human effort through a data-driven active learning protocol. Such models can afterward be applied in exhaustive simulations to provide reliable answers for the scientific question at hand or to systematically explore the thermal performance of ab initio methods. We showcase this methodology on a diverse set of aqueous systems comprising bulk water with different ions in solution, water on a titanium dioxide surface, and water confined in nanotubes and between molybdenum disulfide sheets. Highlighting the accuracy of our approach with respect to the underlying ab initio reference, the resulting models are evaluated in detail with an automated validation protocol that includes structural and dynamical properties and the precision of the force prediction of the models. Finally, we demonstrate the capabilities of our approach for the description of water on the rutile titanium dioxide (110) surface to analyze the structure and mobility of water on this surface. Such machine learning models provide a straightforward and uncomplicated but accurate extension of simulation time and length scales for complex systems.
DOI: 10.1038/s41586-022-05036-x
2022
Cited 79 times
The first-principles phase diagram of monolayer nanoconfined water
Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena in geology and biology. However, the properties of nanoscale water can be substantially different from those of bulk water, as shown, for example, by the anomalously low dielectric constant of water in nanochannels1, near frictionless water flow2 or the possible existence of a square ice phase3. Such properties suggest that nanoconfined water could be engineered for technological applications in nanofluidics4, electrolyte materials5 and water desalination6. Unfortunately, challenges in experimentally characterizing water at the nanoscale and the high cost of first-principles simulations have prevented the molecular-level understanding required to control the behaviour of water. Here we combine a range of computational approaches to enable a first-principles-level investigation of a single layer of water within a graphene-like channel. We find that monolayer water exhibits surprisingly rich and diverse phase behaviour that is highly sensitive to temperature and the van der Waals pressure acting within the nanochannel. In addition to multiple molecular phases with melting temperatures varying non-monotonically by more than 400 kelvins with pressure, we predict a hexatic phase, which is an intermediate between a solid and a liquid, and a superionic phase with a high electrical conductivity exceeding that of battery materials. Notably, this suggests that nanoconfinement could be a promising route towards superionic behaviour under easily accessible conditions.
DOI: 10.1038/s41586-023-05849-4
2023
Cited 30 times
pH-dependent water permeability switching and its memory in MoS2 membranes
Intelligent transport of molecular species across different barriers is critical for various biological functions and is achieved through the unique properties of biological membranes1-4. Two essential features of intelligent transport are the ability to (1) adapt to different external and internal conditions and (2) memorize the previous state5. In biological systems, the most common form of such intelligence is expressed as hysteresis6. Despite numerous advances made over previous decades on smart membranes, it remains a challenge to create a synthetic membrane with stable hysteretic behaviour for molecular transport7-11. Here we demonstrate the memory effects and stimuli-regulated transport of molecules through an intelligent, phase-changing MoS2 membrane in response to external pH. We show that water and ion permeation through 1T' MoS2 membranes follows a pH-dependent hysteresis with a permeation rate that switches by a few orders of magnitude. We establish that this phenomenon is unique to the 1T' phase of MoS2, due to the presence of surface charge and exchangeable ions on the surface. We further demonstrate the potential application of this phenomenon in autonomous wound infection monitoring and pH-dependent nanofiltration. Our work deepens understanding of the mechanism of water transport at the nanoscale and opens an avenue for the development of intelligent membranes.
DOI: 10.1126/science.abq2105
2023
Cited 26 times
Medium-density amorphous ice
Amorphous ices govern a range of cosmological processes and are potentially key materials for explaining the anomalies of liquid water. A substantial density gap between low-density and high-density amorphous ice with liquid water in the middle is a cornerstone of our current understanding of water. However, we show that ball milling “ordinary” ice I h at low temperature gives a structurally distinct medium-density amorphous ice (MDA) within this density gap. These results raise the possibility that MDA is the true glassy state of liquid water or alternatively a heavily sheared crystalline state. Notably, the compression of MDA at low temperature leads to a sharp increase of its recrystallization enthalpy, highlighting that H 2 O can be a high-energy geophysical material.
DOI: 10.48550/arxiv.2401.00096
2024
Cited 5 times
A foundation model for atomistic materials chemistry
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model - and its qualitative and at times quantitative accuracy - on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, chemical reactions, interfaces and even the dynamics of a small protein. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.
DOI: 10.1021/ja003576x
2001
Cited 319 times
Catalytic Water Formation on Platinum: A First-Principles Study
The study of catalytic behavior begins with one seemingly simple process, namely the hydrogenation of O to H2O on platinum. Despite the apparent simplicity its mechanism has been much debated. We have used density functional theory with gradient corrections to examine microscopic reaction pathways for several elementary steps implicated in this fundamental catalytic process. We find that H2O formation from chemisorbed O and H atoms is a highly activated process. The largest barrier along this route, with a value of approximately 1 eV, is the addition of the first H to O to produce OH. Once formed, however, OH groups are easily hydrogenated to H2O with a barrier of approximately 0.2 eV. Disproportionation reactions with 1:1 and 2:1 stoichiometries of H2O and O have been examined as alternative routes for OH formation. Both stoichiometries of reaction produce OH groups with barriers that are much lower than that associated with the O + H reaction. H2O, therefore, acts as an autocatalyst in the overall H2O formation process. Disproportionation with a 2:1 stoichiometry is thermodynamically and kinetically favored over disproportionation with a 1:1 stoichiometry. This highlights an additional (promotional) role of the second H2O molecule in this process. In support of our previous suggestion that the key intermediate in the low-temperature H2O formation reaction is a mixed OH and H2O overlayer we find that there is a very large barrier for the dissociation of the second H2O molecule in the 2:1 disproportionation process. We suggest that the proposed intermediate is then hydrogenated to H2O through a very facile proton-transfer mechanism.
DOI: 10.1021/ja028855u
2003
Cited 227 times
Different Surface Chemistries of Water on Ru{0001}: From Monomer Adsorption to Partially Dissociated Bilayers
Density functional theory has been used to perform a comparative theoretical study of the adsorption and dissociation of H(2)O monomers and icelike bilayers on Ru[0001]. H(2)O monomers bind preferentially at atop sites with an adsorption energy of approximately 0.4 eV/H(2)O. The main bonding interaction is through the H(2)O 1b(1) molecular orbital which mixes with Ru d(z)2 states. The lower-lying set of H(2)O molecules in an intact H(2)O bilayer bond in a similar fashion; the high-lying H(2)O molecules, however, do not bond directly with the surface, rather they are held in place through H bonding. The H(2)O adsorption energy in intact bilayers is approximately 0.6 eV/H(2)O and we estimate that H bonding accounts for approximately 70% of this. In agreement with Feibelman (Science 2002, 295, 99) we find that a partially dissociated OH + H(2)O overlayer is energetically favored over pure intact H(2)O bilayers on the surface. The barrier for the dissociation of a chemisorbed H(2)O monomer is 0.8 eV, whereas the barrier to dissociate a H(2)O incorporated in a bilayer is just 0.5 eV.
DOI: 10.1063/1.3012573
2008
Cited 217 times
On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions
Second order Møller–Plesset perturbation theory at the complete basis set limit and diffusion quantum Monte Carlo are used to examine several low energy isomers of the water hexamer. Both approaches predict the so-called prism to be the lowest energy isomer, followed by cage, book, and cyclic isomers. The energies of the four isomers are very similar, all being within 10–15 meV/H2O. These reference data are then used to evaluate the performance of several density-functional theory exchange-correlation (xc) functionals. A subset of the xc functionals tested for smaller water clusters [I. Santra et al., J. Chem. Phys. 127, 184104 (2007)] has been considered. While certain functionals do a reasonable job at predicting the absolute dissociation energies of the various isomers (coming within 10–20 meV/H2O), none predict the correct energetic ordering of the four isomers nor does any predict the correct low total energy isomer. All xc functionals tested either predict the book or cyclic isomers to have the largest dissociation energies. A many-body decomposition of the total interaction energies within the hexamers leads to the conclusion that the failure lies in the poor description of van der Waals (dispersion) forces in the xc functionals considered. It is shown that the addition of an empirical pairwise (attractive) C6R−6 correction to certain functionals allows for an improved energetic ordering of the hexamers. The relevance of these results to density-functional simulations of liquid water is also briefly discussed.
DOI: 10.1038/nmat2403
2009
Cited 214 times
A one-dimensional ice structure built from pentagons
DOI: 10.1063/1.2790009
2007
Cited 212 times
On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: Benchmarks approaching the complete basis set limit
The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Moller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.
DOI: 10.1103/physrevb.82.161415
2010
Cited 188 times
Structure and dynamics of liquid water on rutile<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mn>110</mml:mn></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>
Water on ${\text{TiO}}_{2}(110)$ is the most widely studied water-oxide interface, yet questions about water dissociation and hydrogen bonding are controversial. Here we report density-functional theory simulations which show that water does not dissociate at the coverages examined. The aqueous film is layered, with slow moving molecules in the contact layer and fast moving molecules in a second layer, revealing strongly inhomogeneous dynamics of the interfacial water. Hydrogen bonding between the first and second layers is observed as is the exchange of water molecules. These results help to resolve a number of controversies pertaining to the molecular scale behavior of water on ${\text{TiO}}_{2}$ and provide insight in to the structure and dynamics of water-solid interfaces by, e.g., demonstrating that water dynamics can vary on the Angstr\"om length scale and that the presence of second layer water molecules can cause those in the first layer to reorient.
DOI: 10.1063/1.1328746
2001
Cited 174 times
A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt
Density functional theory has been used to study the adsorption of hydroxyl at low and high coverages and also to investigate the nature of the intermediate in the H2O formation reaction on Pt(111). At low coverages [1/9 of a monolayer (ML) to 1/3 ML] OH binds preferentially at bridge and top sites with a chemisorption energy of ∼2.25 eV. At high coverages (1/2 ML to 1 ML) H bonding between adjacent hydroxyls causes: (i) an enhancement in OH chemisorption energy by about 15%; (ii) a strong preference for OH adsorption at top sites; and (iii) the formation of OH networks. The activation energy for the diffusion of isolated OH groups along close packed rows of Pt atoms is 0.1 eV. This low barrier coupled with H bonding between neighboring OH groups indicates that hydroxyls are susceptible to island formation at low coverages. Pure OH as well as coadsorbed OH and H can be ruled out as the observed low temperature intermediate in the water formation reaction. Instead we suggest that the intermediate consists of a mixed OH+H2O overlayer with a macroscopic surface coverage of 3/4 ML in a 2:1 ratio of OH and H2O.
DOI: 10.1103/physrevlett.93.116101
2004
Cited 173 times
Novel Water Overlayer Growth on Pd(111) Characterized with Scanning Tunneling Microscopy and Density Functional Theory
Scanning tunneling microscopy (STM) images of water submonolayers on Pd(111) reveal quasiperiodic and isolated adclusters with internal structure that would ordinarily be ascribed to icelike puckered hexagonal units. However, density functional theory and STM simulations contradict this conventional picture, showing instead that the water adlayers are composed mainly of flat-lying molecules arranged in planar water hexagons. A new rule for two dimensional (2D) water growth is offered that generates the structures observed experimentally from planar hexamer units.
DOI: 10.1103/physrevb.69.113404
2004
Cited 164 times
Insight into<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:math>-ice adsorption and dissociation on metal surfaces from first-principles simulations
Density-functional theory has been used to perform a systematic study of (intact) ${\mathrm{H}}_{2}\mathrm{O}$ bilayer and (dissociated) ${\mathrm{H}}_{2}\mathrm{O}\ensuremath{-}\mathrm{O}\mathrm{H}\ensuremath{-}\mathrm{H}$ overlayer adsorption on hexagonal $3d,$ $4d,$ and $5d$ transition- and noble-metal surfaces. Through careful decompositions of the ${\mathrm{H}}_{2}\mathrm{O}$ adsorption energies, we find that variations in the relative stability of intact bilayers and dissociated overlayers depend mainly on variations in adsorbate-substrate bonding, and not on variations in H bonding as previously assumed. Further, we show that the ${\mathrm{H}}_{2}\mathrm{O}$ dissociation energy in the bilayers is controlled by the OH-metal bond strength in the dissociated overlayers.
DOI: 10.1088/0953-8984/24/42/424216
2012
Cited 164 times
Improved description of soft layered materials with van der Waals density functional theory
The accurate description of van der Waals forces within density functional theory is currently one of the most active areas of research in computational physics and chemistry. Here we report results on the structural and energetic properties of graphite and hexagonal boron nitride, two layered materials where interlayer binding is dominated by van der Waals forces. Results from several density functionals are reported, including the optimized Becke88 van der Waals (optB88-vdW) and the optimized PBE van der Waals (optPBE-vdW) (Klimeš et al 2010 J. Phys.: Condens. Matter 22 022201) functionals. Where comparison to experiment and higher-level theory is possible, the results obtained from the two new van der Waals density functionals are in good agreement. An analysis of the physical nature of the interlayer binding in both graphite and hexagonal boron nitride is also reported.
DOI: 10.1103/physrevlett.106.026101
2011
Cited 163 times
To Wet or Not to Wet? Dispersion Forces Tip the Balance for Water Ice on Metals
Despite widespread discussion, the role of van der Waals dispersion forces in wetting remains unclear. Here we show that nonlocal correlations contribute substantially to the water-metal bond and that this is an important factor in governing the relative stabilities of wetting layers and 3D bulk ice. Because of the greater polarizability of the substrate metal atoms, nonlocal correlations between water and the metal exceed those between water molecules within ice. This sheds light on a long-standing problem, wherein common density functional theory exchange-correlation functionals incorrectly predict that none of the low temperature experimentally characterized icelike wetting layers are thermodynamically stable.
DOI: 10.1016/j.susc.2007.12.032
2008
Cited 157 times
Water on the hydroxylated (001) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer
In order to understand the role played by kaolinite in heterogeneous ice nucleation, an extensive density-functional theory study has been performed for water on its (0 0 1) basal plane. Water monomers at low coverage, water clusters, water bilayers and water multilayers have all been examined. The most important and interesting results from this study are: (i) water monomers bind strongly to kaolinite compared to many other substrates. In the preferred adsorption structure water accepts two H bonds from and donates one H bond to the substrate, revealing that kaolinite, like water, is amphoteric with the ability to accept and donate H bonds; (ii) clustering of adsorbed water molecules is not significantly favored. All water clusters (dimers, tetramers, and hexamers) examined are, at best, equally stable to water monomers; (iii) a 2D ice-like bilayer, with a stability matching that of ice Ih has been identified implying that water can wet kaolinite; (iv) multilayer ice growth is not favored, being considerably unstable compared to bulk ice, indicating that the water covered kaolinite surface is itself “hydrophobic”. Overall we see that amphoterism of the hydroxylated surface is key to many of the interesting properties of kaolinite with regard to water adsorption and ice nucleation, revealing that the behavior of water on kaolinite is more complex and interesting than previously thought to be and highlighting the need for further theoretical and experimental work.
DOI: 10.1007/s00339-006-3695-9
2006
Cited 155 times
Density functional theory simulations of water–metal interfaces: waltzing waters, a novel 2D ice phase, and more
DOI: 10.1103/physrevlett.96.146101
2006
Cited 146 times
Revisiting the Structure of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>4</mml:mn><mml:mo>×</mml:mo><mml:mn>4</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>Surface Oxide on Ag(111)
Scanning tunneling microscopy (STM) and density-functional theory are used to reexamine the structure of the renowned p(4 x 4)-O/Ag(111) surface oxide. The accepted structural model [C. I. Carlisle, Phys. Rev. Lett. 84, 3899 (2000)10.1103/PhysRevLett.84.3899] is incompatible with the enhanced resolution of the current STM measurements. An "Ag6 model" is proposed that is more stable than its predecessor and accounts for the coexistence of the p(4 x 4) and a novel c(3 x 5log3)rect phase. This coexistence is an indication of the dynamic complexity of the system that until now has not been appreciated.
DOI: 10.1063/1.4919714
2015
Cited 126 times
Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity
Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material's surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation. We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability.
DOI: 10.1063/1.4824481
2013
Cited 123 times
On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures
Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.
DOI: 10.1007/s11244-017-0882-1
2018
Cited 119 times
Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys
Platinum group metals (PGMs) serve as highly active catalysts in a variety of heterogeneous chemical processes. Unfortunately, their high activity is accompanied by a high affinity for CO and thus, PGMs are susceptible to poisoning. Alloying PGMs with metals exhibiting lower affinity to CO could be an effective strategy toward preventing such poisoning. In this work, we use density functional theory to demonstrate this strategy, focusing on highly dilute alloys of PGMs (Pd, Pt, Rh, Ir and Ni) with poison resistant coinage metal hosts (Cu, Ag, Au), such that individual PGM atoms are dispersed at the atomic limit forming single atom alloys (SAAs). We show that compared to the pure metals, CO exhibits lower binding strength on the majority of SAAs studied, and we use kinetic Monte Carlo simulation to obtain relevant temperature programed desorption spectra, which are found to be in good agreement with experiments. Additionally, we consider the effects of CO adsorption on the structure of SAAs. We calculate segregation energies which are indicative of the stability of dopant atoms in the bulk compared to the surface layer, as well as aggregation energies to determine the stability of isolated surface dopant atoms compared to dimer and trimer configurations. Our calculations reveal that CO adsorption induces dopant atom segregation into the surface layer for all SAAs considered here, whereas aggregation and island formation may be promoted or inhibited depending on alloy constitution and CO coverage. This observation suggests the possibility of controlling ensemble effects in novel catalyst architectures through CO-induced aggregation and kinetic trapping.
DOI: 10.1021/ja906687f
2010
Cited 110 times
Positive Charge States and Possible Polymorphism of Gold Nanoclusters on Reduced Ceria
The catalytic properties of Au/CeO2 systems are sensitive to the nature of Au clusters; however, atomic information on Au clusters is sparse. In this work, we use density functional theory to investigate the nucleation of small Au clusters (up to Au11). By depositing Au atoms one by one at a reduced CeO2{111} surface, we present detailed nucleation patterns. Although relatively small in size, the nanoclusters obtained exhibit interesting characteristic features. In addition to the face-centered cubic (fcc) geometry, reminiscent of bulk Au, we also find the existence of novel hexagonal close-packed (hcp) structures. Furthermore, the facets of the nanoclusters are versatile, comprising {111}/{100} combinations for the fcc-like clusters and {101̅1}/{0001} combinations for the hcp-like. Electronically, the contact layer Au atoms that bond with surface O atoms are positively charged, which could have significant implications in catalysis.
DOI: 10.1039/c0cp01123a
2011
Cited 107 times
Theory of gold on ceria
The great promise of ceria-supported gold clusters as catalysts of the future for important industrial processes, such as the water gas shift reaction, has prompted a flurry of activity aimed at understanding the molecular-level details of their operation. Much of this activity has focused on experimental and theoretical studies of the structure of perfect and defective ceria surfaces, with and without gold clusters of various sizes. The complicated electronic structure of ceria, particularly in its reduced form, means that at present it is highly challenging to carry out accurate electronic structure simulations of such systems. To overcome the challenges, the majority of recent theoretical studies have adopted a pragmatic and often controversial approach, applying the so-called DFT + U technique. Here we will briefly discuss some recent studies of Au on CeO(2){111} that mainly use this methodology. We will show that considerable insight has been obtained into these systems, particularly with regard to Au adsorbates and Au cluster reactivity. We will also briefly discuss the need for improved electronic structure methods, which would enable more rigorous and robust studies in the future.
DOI: 10.1021/acs.jpclett.8b03679
2019
Cited 93 times
Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods
Wet carbon interfaces are ubiquitous in the natural world and exhibit anomalous properties, which could be exploited by emerging technologies. However, progress is limited by lack of understanding at the molecular level. Remarkably, even for the most fundamental system (a single water molecule interacting with graphene), there is no consensus on the nature of the interaction. We tackle this by performing an extensive set of complementary state-of-the-art computer simulations on some of the world's largest supercomputers. From this effort a consensus on the water–graphene interaction strength has been obtained. Our results have significant impact for the physical understanding, as they indicate that the interaction is weaker than predicted previously. They also pave the way for more accurate and reliable studies of liquid water at carbon interfaces.
DOI: 10.1021/jz402646c
2014
Cited 84 times
Solvent-Induced Proton Hopping at a Water–Oxide Interface
Despite widespread interest, a detailed understanding of the dynamics of proton transfer at interfaces is lacking. Here, we use ab initio molecular dynamics to unravel the connection between interfacial water structure and proton transfer for the widely studied and experimentally well-characterized water-ZnO(101̅0) interface. We find that upon going from a single layer of adsorbed water to a liquid multilayer, changes in the structure are accompanied by a dramatic increase in the proton-transfer rate at the surface. We show how hydrogen bonding and rather specific hydrogen-bond fluctuations at the interface are responsible for the change in the structure and proton-transfer dynamics. The implications of this for the chemical reactivity and for the modeling of complex wet oxide interfaces in general are also discussed.
DOI: 10.1073/pnas.1817135116
2019
Cited 82 times
Ice is born in low-mobility regions of supercooled liquid water
When an ice crystal is born from liquid water, two key changes occur: (i) The molecules order and (ii) the mobility of the molecules drops as they adopt their lattice positions. Most research on ice nucleation (and crystallization in general) has focused on understanding the former with less attention paid to the latter. However, supercooled water exhibits fascinating and complex dynamical behavior, most notably dynamical heterogeneity (DH), a phenomenon where spatially separated domains of relatively mobile and immobile particles coexist. Strikingly, the microscopic connection between the DH of water and the nucleation of ice has yet to be unraveled directly at the molecular level. Here we tackle this issue via computer simulations which reveal that (i) ice nucleation occurs in low-mobility regions of the liquid, (ii) there is a dynamical incubation period in which the mobility of the molecules drops before any ice-like ordering, and (iii) ice-like clusters cause arrested dynamics in surrounding water molecules. With this we establish a clear connection between dynamics and nucleation. We anticipate that our findings will pave the way for the examination of the role of dynamical heterogeneities in heterogeneous and solution-based nucleation.
DOI: 10.1021/acs.jpclett.6b01013
2016
Cited 78 times
Microscopic Mechanism and Kinetics of Ice Formation at Complex Interfaces: Zooming in on Kaolinite
Most ice in nature forms thanks to impurities which boost the exceedingly low nucleation rate of pure supercooled water.However, the microscopic details of ice nucleation on these substances remain largely unknown.Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science.We find that the formation of ice at strong supercooling in the presence of this clay is twenty orders of magnitude faster than homogeneous freezing.The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong 2D character.Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface.Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed.
DOI: 10.1146/annurev-chembioeng-080615-034455
2016
Cited 73 times
The Carbon-Water Interface: Modeling Challenges and Opportunities for the Water-Energy Nexus
Providing clean water and sufficient affordable energy to all without compromising the environment is a key priority in the scientific community. Many recent studies have focused on carbon-based devices in the hope of addressing this grand challenge, justifying and motivating detailed studies of water in contact with carbonaceous materials. Such studies are becoming increasingly important because of the miniaturization of newly proposed devices, with ubiquitous nanopores, large surface-to-volume ratio, and many, perhaps most of the water molecules in contact with a carbon-based surface. In this brief review, we discuss some recent advances obtained via simulations and experiments in the development of carbon-based materials for applications in water desalination. We suggest possible ways forward, with particular emphasis on the synergistic combination of experiments and simulations, with simulations now sometimes offering sufficient accuracy to provide fundamental insights. We also point the interested reader to recent works that complement our short summary on the state of the art of this important and fascinating field.
DOI: 10.1002/anie.201703585
2017
Cited 73 times
Encapsulation and Polymerization of White Phosphorus Inside Single‐Wall Carbon Nanotubes
Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.
DOI: 10.1021/acs.jpcc.6b03473
2016
Cited 71 times
Preparation, Structure, and Surface Chemistry of Ni–Au Single Atom Alloys
Ni/Au is an alloy combination that while, immiscible in the bulk, exhibits a rich array of surface geometries that may offer improved catalytic properties. It has been demonstrated that the addition of small amounts of Au to Ni tempers its reactivity and reduces coking during the steam reforming of methane. Herein, we report the first successful preparation of dilute Ni–Au alloys (up to 0.04 ML) in which small amounts of Ni are deposited on, and alloyed into, Au(111) using physical vapor deposition. We find that the surface structure can be tuned during deposition via control of the substrate temperature. By adjusting the surface temperature in the 300–650 K range, we are able to produce first Ni islands, then mixtures of Ni islands and Ni–Au surface alloys, and finally, when above 550 K, predominantly island-free Ni–Au single atom alloys (SAAs). Low-temperature scanning tunneling microscopy (STM) combined with density functional theory calculations confirm that the Ni–Au SAAs formed at high temperature correspond to Ni atoms exchanged with surface Au atoms. Ni–Au SAAs form preferentially at the elbow regions of the Au(111) herringbone reconstruction, but at high coverage also appear over the whole surface. To investigate the adsorption properties of Ni–Au SAAs, we studied the adsorption and desorption of CO using STM which allowed us to determine at which atomic sites the CO adsorbs on these heterogeneous alloys. We find that small amounts of Ni in the form of single atoms increases the reactivity of the substrate by creating single Ni sites in the Au surface to which CO binds significantly more strongly than Au. These results serve as a guide in the design of surface architectures that combine Au's weak binding and selective chemistry with localized, strong binding Ni atom sites that serve to increase reactivity.
DOI: 10.1021/jacs.7b12050
2018
Cited 71 times
Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles
Natural gas hydrates occur widely on the ocean-bed and in permafrost regions, and have potential as an untapped energy resource. Their formation and growth, however, poses major problems for the energy sector due to their tendency to block oil and gas pipelines, whereas their melting is viewed as a potential contributor to climate change. Although recent advances have been made in understanding bulk methane hydrate formation, the effect of impurity particles, which are always present under conditions relevant to industry and the environment, remains an open question. Here we present results from neutron scattering experiments and molecular dynamics simulations that show that the formation of methane hydrate is insensitive to the addition of a wide range of impurity particles. Our analysis shows that this is due to the different chemical natures of methane and water, with methane generally excluded from the volume surrounding the nanoparticles. This has important consequences for our understanding of the mechanism of hydrate nucleation and the design of new inhibitor molecules.
DOI: 10.1073/pnas.1715434115
2018
Cited 71 times
Fast and accurate quantum Monte Carlo for molecular crystals
Significance Computational approaches based on the fundamental laws of quantum mechanics are now integral to almost all materials design initiatives in academia and industry. If computational materials science is genuinely going to deliver on its promises, then an electronic structure method with consistently high accuracy is urgently needed. We show that, thanks to recent algorithmic advances and the strategy developed in our manuscript, quantum Monte Carlo yields extremely accurate predictions for the lattice energies of materials at a surprisingly modest computational cost. It is thus no longer a technique that requires a world-leading computational facility to obtain meaningful results. While we focus on molecular crystals, the significance of our findings extends to all classes of materials.
DOI: 10.1038/s41586-022-05130-0
2022
Cited 32 times
Tracking single adatoms in liquid in a transmission electron microscope
Single atoms or ions on surfaces affect processes from nucleation1 to electrochemical reactions2 and heterogeneous catalysis3. Transmission electron microscopy is a leading approach for visualizing single atoms on a variety of substrates4,5. It conventionally requires high vacuum conditions, but has been developed for in situ imaging in liquid and gaseous environments6,7 with a combined spatial and temporal resolution that is unmatched by any other method-notwithstanding concerns about electron-beam effects on samples. When imaging in liquid using commercial technologies, electron scattering in the windows enclosing the sample and in the liquid generally limits the achievable resolution to a few nanometres6,8,9. Graphene liquid cells, on the other hand, have enabled atomic-resolution imaging of metal nanoparticles in liquids10. Here we show that a double graphene liquid cell, consisting of a central molybdenum disulfide monolayer separated by hexagonal boron nitride spacers from the two enclosing graphene windows, makes it possible to monitor, with atomic resolution, the dynamics of platinum adatoms on the monolayer in an aqueous salt solution. By imaging more than 70,000 single adatom adsorption sites, we compare the site preference and dynamic motion of the adatoms in both a fully hydrated and a vacuum state. We find a modified adsorption site distribution and higher diffusivities for the adatoms in the liquid phase compared with those in vacuum. This approach paves the way for in situ liquid-phase imaging of chemical processes with single-atom precision.
DOI: 10.1021/acsnano.2c02784
2022
Cited 29 times
Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick
Experimental measurements have reported ultrafast and radius-dependent water transport in carbon nanotubes which are absent in boron nitride nanotubes. Despite considerable effort, the origin of this contrasting (and fascinating) behavior is not understood. Here, with the aid of machine learning-based molecular dynamics simulations that deliver first-principles accuracy, we investigate water transport in single-wall carbon and boron nitride nanotubes. Our simulations reveal a large, radius-dependent hydrodynamic slippage on both materials, with water experiencing indeed a ≈5 times lower friction on carbon surfaces compared to boron nitride. Analysis of the diffusion mechanisms across the two materials reveals that the fast water transport on carbon is governed by facile oxygen motion, whereas the higher friction on boron nitride arises from specific hydrogen–nitrogen interactions. This work not only delivers a clear reference of quantum mechanical accuracy for water flow in single-wall nanotubes but also provides detailed mechanistic insight into its radius and material dependence for future technological application.
DOI: 10.1021/acs.nanolett.2c04187
2023
Cited 15 times
Classical Quantum Friction at Water–Carbon Interfaces
Friction at water-carbon interfaces remains a major puzzle with theories and simulations unable to explain experimental trends in nanoscale waterflow. A recent theoretical framework -- quantum friction (QF)-- proposes to resolve these experimental observations by considering nonadiabatic coupling between dielectric fluctuations in water and graphitic surfaces. Here, using a classical model that enables fine-tuning of the solid's dielectric spectrum, we provide evidence from simulations in general support of QF. In particular, as features in the solid's dielectric spectrum begin to overlap with water's librational and Debye modes, we find an increase in friction in line with that proposed by QF. At the microscopic level, we find that this contribution to friction manifests more distinctly in the dynamics of the solid's charge density than that of water. Our findings suggest that experimental signatures of QF may be more pronounced in the solid's response rather than liquid water's.
DOI: 10.1039/d3fd00113j
2024
Cited 3 times
First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects
Vibrational spectroscopy is a powerful approach to visualising interfacial phenomena. However, extracting structural and dynamical information from vibrational spectra is a challenge that requires first-principles simulations, including non-Condon and quantum nuclear effects. We address this challenge by developing a machine-learning enhanced first-principles framework to speed up predictive modelling of infrared, Raman, and sum-frequency generation spectra. Our approach uses machine learning potentials that encode quantum nuclear effects to generate quantum trajectories using simple molecular dynamics efficiently. In addition, we reformulate bulk and interfacial selection rules to express them unambiguously in terms of the derivatives of polarisation and polarisabilities of the whole system and predict these derivatives efficiently using fully-differentiable machine learning models of dielectric response tensors. We demonstrate our framework's performance by predicting the IR, Raman, and sum-frequency generation spectra of liquid water, ice and the water-air interface by achieving near quantitative agreement with experiments at nearly the same computational efficiency as pure classical methods. Finally, to aid the experimental discovery of new phases of nanoconfined water, we predict the temperature-dependent vibrational spectra of monolayer water across the solid-hexatic-liquid phases transition.
DOI: 10.1039/d3sc04740g
2024
Origin of dielectric polarization suppression in confined water from first principles
It has long been known that the dielectric constant of confined water should be different from that in bulk. Recent experiments have shown that it is vanishingly small, however the origin of the phenomenon remains unclear. Here we used ab initio molecular dynamics simulations (AIMD) and AIMD-trained machine-learning potentials to understand water's structure and electronic properties underpinning this effect. For the graphene and hexagonal boron-nitride substrates considered, we find that it originates in the spontaneous anti-parallel alignment of the water dipoles in the first two water layers near the solid interface. The interfacial layers exhibit net ferroelectric ordering, resulting in an overall anti-ferroelectric arrangement of confined water. Together with constrained hydrogen-bonding orientations, this leads to much reduced out-of-plane polarization. Furthermore, we directly contrast AIMD and simple classical force-field simulations, revealing important differences. This work offers insight into a property of water that is critical in modulating surface forces, the electric-double-layer formation and molecular solvation, and shows a way to compute it.
DOI: 10.1021/ja0011919
2000
Cited 150 times
Insight into Microscopic Reaction Pathways in Heterogeneous Catalysis
ADVERTISEMENT RETURN TO ISSUEPREVCommunicationNEXTInsight into Microscopic Reaction Pathways in Heterogeneous CatalysisA. Michaelides and P. HuView Author Information School of Chemistry, The Queen's University of Belfast Belfast BT9 5AG, U.K. Cite this: J. Am. Chem. Soc. 2000, 122, 40, 9866–9867Publication Date (Web):September 23, 2000Publication History Received5 April 2000Revised18 August 2000Published online23 September 2000Published inissue 1 October 2000https://doi.org/10.1021/ja0011919Copyright © 2000 American Chemical SocietyRIGHTS & PERMISSIONSArticle Views1291Altmetric-Citations131LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit Read OnlinePDF (41 KB) Get e-AlertsSUBJECTS:Adsorption,Chemical reactions,Electrical energy,Hollow structures,Hydrogenation Get e-Alerts
DOI: 10.1103/physrevlett.90.246103
2003
Cited 122 times
Resolution of an Ancient Surface Science Anomaly: Work Function Change Induced by N Adsorption on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">W</mml:mi><mml:mo stretchy="false">{</mml:mo><mml:mn>100</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:math>
For many decades it has been assumed that an adsorbate centered above a metal surface and with a net negative charge should increase the work function of the surface. However, despite their electronegativity, N adatoms on W[100] cause a significant work function decrease. Here we present a resolution of this anomaly. Using density functional theory, we demonstrate that while the N atom carries a negative charge, of overriding importance is a reduction in the surface overspill electron density into the vacuum, when that charge is engaged in bonding to the adatom. This novel interpretation is fundamentally important in the general understanding of work function changes induced by atomic adsorbates.
DOI: 10.1103/physrevlett.92.136104
2004
Cited 120 times
Water Dimer Diffusion on Pd{111} Assisted by an H-Bond Donor-Acceptor Tunneling Exchange
Based on the results of density functional theory calculations, a novel mechanism for the diffusion of water dimers on metal surfaces is proposed, which relies on the ability of H bonds to rearrange through quantum tunneling. The mechanism involves quasifree rotation of the dimer and exchange of H-bond donor and acceptor molecules. At appropriate temperatures, water dimers diffuse more rapidly than water monomers, thus providing a physical explanation for the experimentally measured high diffusivity of water dimers on Pd{111} [Mitsui et al., Science 297, 1850 (2002)].
DOI: 10.1016/s0009-2614(02)01699-8
2003
Cited 112 times
Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag{1 1 1}
With density functional theory, we have examined oxygen adsorption at surface and subsurface sites of Ag{1 1 1}. The microscopic structure of Ag oxide epitaxed to Ag{1 1 1} has also been determined. In agreement with a recent scanning tunneling microscopy study, non-stoichiometric oxide growth is favoured over the previously assumed stoichiometric growth. An ab initio phase diagram for O on Ag{1 1 1} has been constructed from the adsorption free energy of the various O and Ag oxide phases. The key finding is that under real conditions for ethylene epoxidation the active catalyst is likely to be non-stoichiometric Ag oxide.
DOI: 10.1103/physrevb.79.075433
2009
Cited 109 times
Oxygen vacancy clusters on ceria: Decisive role of cerium<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi></mml:math>electrons
Defects such as oxygen vacancies dominate the electronic and chemical properties of ceria. However, fundamental understanding of such defects, especially clusters of vacancies, is sparse. In this work, we use density-functional theory with the addition of the Hubbard $U$ term to investigate various oxygen vacancies, including the vacancy monomer, dimer, trimer, and tetramer, in which subsurface vacancies can also be involved. We show that the individual surface and subsurface vacancies have very similar stabilities; the vacancy dimer consisting of two surface vacancies, which is not reported experimentally, is stable in theory; between the two vacancy trimers observed in experiments, the triangular surface vacancy cluster is more stable than the double linear surface vacancy cluster containing a subsurface vacancy, which agrees with some experiments but disagrees with some others; and the linear vacancy tetramer emerges as the most stable among the possible tetramers containing subsurface vacancies, although it is less stable than those containing no subsurface vacancies. These findings are rationalized in terms of the electronic change upon the removal of oxygen, namely, the localization of resulting excess electrons on $\text{Ce}\text{ }f$ orbitals. We identify a correlation between the energy levels of the occupied $f$ states of reduced Ce ions and their coordination numbers, which proves pivotal in interpreting formation energy and stability of various vacancies. Comparisons are made with experiments and apparent discrepancies are discussed. Results for gold adsorption on the vacancy clusters are presented, and the implications these have in catalysis are briefly discussed.
DOI: 10.1116/1.2049302
2005
Cited 109 times
When seeing is not believing: Oxygen on Ag(111), a simple adsorption system?
A number of recent studies indicate that, under the oxygen rich conditions of oxidation catalysis, some transition metal catalysts may be covered by thin oxide overlayers. Moreover, it has been suggested that such “surface-oxide” layers are catalytically active, possibly more active than the pure metal surfaces as was traditionally assumed. This contemporary picture can be traced back to Ag catalysis, where over 30years ago it was suggested that the top layer of Ag(111) reconstructed to an epitaxial Ag2O like overlayer upon exposure to oxygen [Rovida et al., Surf. Sci. 43, 230 (1974)]. Extensive experimental work, including scanning tunneling microscopy studies in which the oxide was apparently imaged with atomic resolution, as well as density-functional theory calculations, largely confirmed this interpretation. However, a review of published experimental data and new density-functional theory results presented here indicate that previous conclusions are significantly incomplete and that the structure of this original surface oxide must be reconsidered.
DOI: 10.1063/1.3009629
2008
Cited 105 times
Structure of gold atoms on stoichiometric and defective ceria surfaces
Within the framework of the GGA+U implementation of density functional theory, we investigate atomistic and electronic structures of Au adsorbed on the stoichiometric and the defective CeO(2){111} surfaces, in the latter of which either O or Ce vacancies are presented. We show that on the stoichiometric surface, the most stable adsorption site of Au is not on the top of the outermost O atoms, as previously suggested, but on a bridgelike site in which the Au directly binds to two O atoms. We suggest that on both sites, the original empty Ce 4f states near the Fermi level facilitate the oxidation of the Au; the preference of the Au for being on the bridgelike site is due to the larger O 2p-d(Au) mixing, accompanied by more significant electron redistributions. On the reduced surface with O vacancies, the most stable adsorption site of Au is near the vacancy position. Unlike that on the stoichiometric surface, strong ionic bonding character exists between Au and Ce, as the former becomes Au(delta-) due to the occupation of the 6s(Au) orbitals. Upon substitution for one of the Ce atoms in the lattice, the Au possesses a much stronger positive charge than that in other cases. We find that although Au is strongly bonded when it is at the Ce vacancy site, the overall binding (i.e., with the Ce vacancy formation energy being taken into account) is weaker than that for Au adsorbed at the stoichiometric surface.
DOI: 10.1103/physrevlett.104.066102
2010
Cited 104 times
Quantum Nature of the Proton in Water-Hydroxyl Overlayers on Metal Surfaces
Using ab initio path-integral molecular dynamics, we show that water-hydroxyl overlayers on transition metal surfaces exhibit surprisingly pronounced quantum nuclear effects. The metal substrates serve to reduce the classical proton transfer barriers within the overlayers and, in analogy to ice under high pressure, to shorten the corresponding intermolecular hydrogen bonds. Depending on the substrate and the intermolecular separations it imposes, the traditional distinction between covalent and hydrogen bonds is lost partially [e.g., on Pt(111) and Ru(0001)] or almost entirely [e.g., on Ni(111)]. We suggest that these systems provide an excellent platform on which to systematically explore the magnitude of quantum nuclear effects in hydrogen bonds.
DOI: 10.1016/j.susc.2007.09.012
2007
Cited 101 times
Ice formation on kaolinite: Lattice match or amphoterism?
The long-standing belief that kaolinite is one of the most efficient natural ice nucleating agents because it provides a close lattice match to the basal plane of ice is called into question. Instead we show through an extensive series of first principles calculations that amphoterism is key to many of the interesting properties of kaolinite with regard to water adsorption and ice nucleation.
DOI: 10.1063/1.3125002
2009
Cited 97 times
Insight from first principles into the nature of the bonding between water molecules and 4d metal surfaces
We address the nature of the bond between water molecules and metal surfaces through a systematic density-functional theory (DFT) study of H2O monomer adsorption on a series of close-packed transition metal surfaces: Ru(0001), Rh(111), Pd(111), and Ag(111). Aiming to understand the origin behind energetic and structural trends along the 4d series we employ a range of analysis tools such as the electron reactivity function, decomposition of densities of states, electron density differences, and inspection of individual Kohn–Sham orbitals. The results obtained from our DFT calculations allow us to rationalize the bonding between water and transition metal surfaces as a balance of covalent and electrostatic interactions. A frontier orbital scheme based on so-called two-center four-electron interactions between the molecular orbitals of H2O—mainly the 1b1— and d-band states of the surface proves incisive in understanding these systems.
DOI: 10.1103/physrevb.80.075424
2009
Cited 95 times
Experimental and theoretical study of oxygen adsorption structures on Ag(111)
The oxidized Ag(111) surface has been studied by a combination of experimental and theoretical methods, scanning tunneling microscopy, x-ray photoelectron spectroscopy, and density functional theory. A large variety of different surface structures is found, depending on the detailed preparation conditions. The observed structures fall into four classes: (a) individually chemisorbed atomic oxygen atoms, (b) three different oxygen overlayer structures, including the well-known $p(4\ifmmode\times\else\texttimes\fi{}4)$ phase, formed from the same ${\text{Ag}}_{6}$ and ${\text{Ag}}_{10}$ building blocks, (c) a $c(4\ifmmode\times\else\texttimes\fi{}8)$ structure not previously observed, and (d) at higher oxygen coverages structures characterized by stripes along the high-symmetry directions of the Ag(111) substrate. Our analysis provides a detailed explanation of the atomic-scale geometry of the ${\text{Ag}}_{6}/{\text{Ag}}_{10}$ building block structures and the $c(4\ifmmode\times\else\texttimes\fi{}8)$ and stripe structures are discussed in detail. The observation of many different and co-existing structures implies that the O/Ag(111) system is characterized by a significantly larger degree of complexity than previously anticipated, and this will impact our understanding of oxidation catalysis processes on Ag catalysts.
DOI: 10.1103/physrevlett.106.046103
2011
Cited 88 times
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>c</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>Water-Hydroxyl Layer on Cu(110): A Wetting Layer Stabilized by Bjerrum Defects
Understanding the composition and stability of mixed water-hydroxyl layers is a key step in describing wetting and how surfaces respond to redox processes. Here we show that, instead of forming a complete hydrogen bonding network, structures containing an excess of water over hydroxyl are stabilized on Cu(110) by forming a distorted hexagonal network of water-hydroxyl trimers containing Bjerrum defects. This arrangement maximizes the number of strong bonds formed by water donation to OH and provides uncoordinated OH groups able to hydrogen bond multilayer water and nucleate growth.
DOI: 10.1038/ncomms3064
2013
Cited 83 times
Quantum simulation of low-temperature metallic liquid hydrogen
The melting temperature of solid hydrogen drops with pressure above ~65 GPa, suggesting that a liquid state might exist at low temperatures. It has also been suggested that this low-temperature liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Here we report results for hydrogen at high pressures using ab initio methods, which include a description of the quantum motion of the protons. We determine the melting temperature as a function of pressure and find an atomic solid phase from 500 to 800 GPa, which melts at <200 K. Beyond this and up to 1,200 GPa, a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature reported, as simulations with classical nuclei lead to considerably higher melting temperatures of ~300 K across the entire pressure range considered.
DOI: 10.1039/c3fd00059a
2013
Cited 81 times
The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals
It is surprisingly difficult to freeze water. Almost all ice that forms under "mild" conditions (temperatures > -40 degrees C) requires the presence of a nucleating agent--a solid particle that facilitates the freezing process--such as clay mineral dust, soot or bacteria. In a computer simulation, the presence of such ice nucleating agents does not necessarily alleviate the difficulties associated with forming ice on accessible timescales. Nevertheless, in this work we present results from molecular dynamics simulations in which we systematically compare homogeneous and heterogeneous ice nucleation, using the atmospherically important clay mineral kaolinite as our model ice nucleating agent. From our simulations, we do indeed find that kaolinite is an excellent ice nucleating agent but that contrary to conventional thought, non-basal faces of ice can nucleate at the basal face of kaolinite. We see that in the liquid phase, the kaolinite surface has a drastic effect on the density profile of water, with water forming a dense, tightly bound first contact layer. Monitoring the time evolution of the water density reveals that changes away from the interface may play an important role in the nucleation mechanism. The findings from this work suggest that heterogeneous ice nucleating agents may not only enhance the ice nucleation rate, but also alter the macroscopic structure of the ice crystals that form.
DOI: 10.1103/physrevb.85.085425
2012
Cited 76 times
Influence of water on the electronic structure of metal-supported graphene: Insights from van der Waals density functional theory
We investigate the interaction between water and metal-supported graphene through van der Waals density functional theory calculations. Our results show a systematic increase in the adsorption energy of water on graphene in the presence of underlying metal substrates. In addition, we find that the electronic nature of the graphene-metal contacts behave differently upon water adsorption: In the case of a weak, physical graphene-metal contact, the charge carrier doping level of graphene is tuned by water, resulting in a Fermi level shift on the order of \ensuremath{\sim}100 meV. In the case of a strong chemical graphene-metal contact, the \ensuremath{\pi} and \ensuremath{\pi}${}^{*}$ bands of graphene are hardly perturbed by water adsorption. These results illustrate the correlated nature of the interactions between water, graphene, and metal substrates, and show that the electronic structure and the doping level of graphene can be tailored by water deposition.
DOI: 10.1063/1.4919715
2015
Cited 72 times
Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers
Coarse grained molecular dynamics simulations are presented in which the sensitivity of the ice nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting ice nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of interfacial water plays in heterogeneous ice nucleation and demonstrate that the extent of layering is not a good indicator of ice nucleating ability for all surfaces. Our results suggest that to be an efficient ice nucleating agent, a surface should not bind water too strongly if it is able to accommodate high coverages of water.
DOI: 10.1039/c4fd00273c
2015
Cited 62 times
Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole
The corrosion of materials is an undesirable and costly process affecting many areas of technology and everyday life. As such, considerable effort has gone into understanding and preventing it. Organic molecule based coatings can in certain circumstances act as effective corrosion inhibitors. Although they have been used to great effect for more than sixty years, how they function at the atomic-level is still a matter of debate. In this work, computer simulation approaches based on density functional theory are used to investigate benzotriazole (BTAH), one of the most widely used and studied corrosion inhibitors for copper. In particular, the structures formed by protonated and deprotonated BTAH molecules on Cu(111) have been determined and linked to their inhibiting properties. It is found that hydrogen bonding, van der Waals interactions and steric repulsions all contribute in shaping how BTAH molecules adsorb, with flat-lying structures preferred at low coverage and upright configurations preferred at high coverage. The interaction of the dehydrogenated benzotriazole molecule (BTA) with the copper surface is instead dominated by strong chemisorption via the azole moiety with the aid of copper adatoms. Structures of dimers or chains are found to be the most stable structures at all coverages, in good agreement with scanning tunnelling microscopy results. Benzotriazole thus shows a complex phase behaviour in which van der Waals forces play an important role and which depends on coverage and on its protonation state and all of these factors feasibly contribute to its effectiveness as a corrosion inhibitor.
DOI: 10.1063/1.4921106
2015
Cited 58 times
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of -84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.
DOI: 10.1063/1.4968796
2016
Cited 57 times
Ice formation on kaolinite: Insights from molecular dynamics simulations
The formation of ice affects many aspects of our everyday life as well as technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even via state-of-the-art experimental techniques. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long timescales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.
DOI: 10.1038/s41467-017-02300-x
2017
Cited 57 times
Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation
Heterogeneous crystal nucleation is ubiquitous in nature and at the heart of many industrial applications. At the molecular scale, however, major gaps in understanding this phenomenon persist. Here we investigate through molecular dynamics simulations how the formation of precritical crystalline clusters is connected to the kinetics of nucleation. Considering heterogeneous water freezing as a prototypical scenario of practical relevance, we find that precritical fluctuations connote which crystalline polymorph will form. The emergence of metastable phases can thus be promoted by templating crystal faces characteristic of specific polymorphs. As a consequence, heterogeneous classical nucleation theory cannot describe our simulation results, because the different substrates lead to the formation of different ice polytypes. We discuss how the issue of polymorphism needs to be incorporated into analysis and comparison of heterogeneous and homogeneous nucleation. Our results will help to interpret and analyze the growing number of experiments and simulations dealing with crystal polymorph selection.
DOI: 10.1103/physrevb.93.241118
2016
Cited 56 times
Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step
Diffusion Monte Carlo (DMC) simulations for fermions are becoming the standard for providing high-quality reference data in systems that are too large to be investigated via quantum chemical approaches. DMC with the fixed-node approximation relies on modifications of the Green's function to avoid singularities near the nodal surface of the trial wave function. Here we show that these modifications affect the DMC energies in a way that is not size consistent, resulting in large time-step errors. Building on the modifications of Umrigar et al. and DePasquale et al. we propose a simple Green's function modification that restores size consistency to large values of the time step, which substantially reduces time-step errors. This algorithm also yields remarkable speedups of up to two orders of magnitude in the calculation of molecule-molecule binding energies and crystal cohesive energies, thus extending the horizons of what is possible with DMC.
DOI: 10.1021/acs.jpclett.7b02820
2017
Cited 52 times
Hydrogenation Facilitates Proton Transfer through Two-Dimensional Honeycomb Crystals
Recent experiments have triggered a debate about the ability of protons to transfer easily through individual layers of graphene and hexagonal boron nitride (h-BN). However, state-of-the-art computer calculations have shown that the barriers to proton penetration can, at >3 eV, be excessively high. Despite considerable interest the origin of this apparent anomaly between experiment and simulation remains unclear. We offer a new perspective on this debate and show on the basis of first-principles calculations that the barrier for proton penetration is significantly reduced, to <1 eV, upon hydrogenation, even in the absence of pinholes in the lattice. Although hydrogenation has not been offered as an explanation before, analysis reveals that the barrier is reduced because hydrogenation destabilizes the initial state (a deep-lying chemisorption state) and expands the honeycomb lattice through which the protons penetrate. This study offers a rationalization of the fast proton transfer observed in experiments and highlights the ability of proton transport through single-layer materials in hydrogen-rich solutions.
DOI: 10.1063/1.5121370
2019
Cited 47 times
Interaction between water and carbon nanostructures: How good are current density functional approximations?
Due to their current and future technological applications, including realization of water filters and desalination membranes, water adsorption on graphitic sp2-bonded carbon is of overwhelming interest. However, these systems are notoriously challenging to model, even for electronic structure methods such as density functional theory (DFT), because of the crucial role played by London dispersion forces and noncovalent interactions, in general. Recent efforts have established reference quality interactions of several carbon nanostructures interacting with water. Here, we compile a new benchmark set (dubbed WaC18), which includes a single water molecule interacting with a broad range of carbon structures and various bulk (3D) and two-dimensional (2D) ice polymorphs. The performance of 28 approaches, including semilocal exchange-correlation functionals, nonlocal (Fock) exchange contributions, and long-range van der Waals (vdW) treatments, is tested by computing the deviations from the reference interaction energies. The calculated mean absolute deviations on the WaC18 set depend crucially on the DFT approach, ranging from 135 meV for local density approximation (LDA) to 12 meV for PBE0-D4. We find that modern vdW corrections to DFT significantly improve over their precursors. Within the 28 tested approaches, we identify the best performing within the functional classes of generalized gradient approximated (GGA), meta-GGA, vdW-DF, and hybrid DF, which are BLYP-D4, TPSS-D4, rev-vdW-DF2, and PBE0-D4, respectively.
DOI: 10.1038/s41467-020-15377-8
2020
Cited 44 times
Origins of fast diffusion of water dimers on surfaces
The diffusion of water molecules and clusters across the surfaces of materials is important to a wide range of processes. Interestingly, experiments have shown that on certain substrates, water dimers can diffuse more rapidly than water monomers. Whilst explanations for anomalously fast diffusion have been presented for specific systems, the general underlying physical principles are not yet established. We investigate this through a systematic ab initio study of water monomer and dimer diffusion on a range of surfaces. Calculations reveal different mechanisms for fast water dimer diffusion, which is found to be more widespread than previously anticipated. The key factors affecting diffusion are the balance of water-water versus water-surface bonding and the ease with which hydrogen-bond exchange can occur (either through a classical over-the-barrier process or through quantum-mechanical tunnelling). We anticipate that the insights gained will be useful for understanding future experiments on the diffusion and clustering of hydrogen-bonded adsorbates.
DOI: 10.1038/s41467-020-18605-3
2020
Cited 39 times
Predicting heterogeneous ice nucleation with a data-driven approach
Abstract Water in nature predominantly freezes with the help of foreign materials through a process known as heterogeneous ice nucleation. Although this effect was exploited more than seven decades ago in Vonnegut’s pioneering cloud seeding experiments, it remains unclear what makes a material a good ice former. Here, we show through a machine learning analysis of nucleation simulations on a database of diverse model substrates that a set of physical descriptors for heterogeneous ice nucleation can be identified. Our results reveal that, beyond Vonnegut’s connection with the lattice match to ice, three new microscopic factors help to predict the ice nucleating ability. These are: local ordering induced in liquid water, density reduction of liquid water near the surface and corrugation of the adsorption energy landscape felt by water. With this we take a step towards quantitative understanding of heterogeneous ice nucleation and the in silico design of materials to control ice formation.
DOI: 10.1021/acs.nanolett.1c02585
2021
Cited 29 times
Defect-Dependent Corrugation in Graphene
Graphene's intrinsically corrugated and wrinkled topology fundamentally influences its electronic, mechanical, and chemical properties. Experimental techniques allow the manipulation of pristine graphene and the controlled production of defects which allows one to control the atomic out-of-plane fluctuations and thus tune graphene's properties. Here, we perform large scale machine learning-driven molecular dynamics simulations to understand the impact of defects on the structure of graphene. We find that defects cause significantly higher corrugation leading to a strongly wrinkled surface. The magnitude of this structural transformation strongly depends on the defect concentration and specific type of defect. Analyzing the atomic neighborhood of the defects reveals that the extent of these morphological changes depends on the preferred geometrical orientation and the interactions between defects. While our work highlights that defects can strongly affect graphene's morphology, it also emphasizes the differences between distinct types by linking the global structure to the local environment of the defects.
DOI: 10.1021/acs.jpclett.2c01519
2022
Cited 17 times
Stick or Spill? Scaling Relationships for the Binding Energies of Adsorbates on Single-Atom Alloy Catalysts
Single-atom alloy catalysts combine catalytically active metal atoms, present as dopants, with the selectivity of coinage metal hosts. Determining whether adsorbates stick at the dopant or spill over onto the host is key to understanding catalytic mechanisms on these materials. Despite a growing body of work, simple descriptors for the prediction of spillover energies (SOEs), i.e., the relative stability of an adsorbate on the dopant versus the host site, are not yet available. Using Density Functional Theory (DFT) calculations on a large set of adsorbates, we identify the dopant charge and the SOE of carbon as suitable descriptors. Combining them into a linear surrogate model, we can reproduce DFT-computed SOEs within 0.06 eV mean absolute error. More importantly, our work provides an intuitive theoretical framework, based on the concepts of electrostatic interactions and covalency, that explains SOE trends and can guide the rational design of future single-atom alloy catalysts.
DOI: 10.1021/ja0297741
2003
Cited 106 times
New Insights into Ethene Epoxidation on Two Oxidized Ag{111} Surfaces
Reaction mechanisms and activation energies for the complete conversion of ethene to ethene epoxide on two recently characterized oxidized Ag{111} surfaces have been determined from density functional theory. On both surfaces, epoxidation proceeds through a two-step nonconcerted mechanism via an oxametallacycle intermediate. The key implications are that both surfaces are active and that epoxidation can take place over a wide O coverage regime.