ϟ

A. Popov

Here are all the papers by A. Popov that you can download and read on OA.mg.
A. Popov’s last known institution is . Download A. Popov PDFs here.

Claim this Profile →
DOI: 10.1140/epjc/s10052-021-09538-2
2021
Cited 118 times
Precision luminosity measurement in proton–proton collisions at $$\sqrt{s} = 13\,\hbox {TeV}$$ in 2015 and 2016 at CMS
The measurement of the luminosity recorded by the CMS detector installed at LHC interaction point 5, using proton-proton collisions at s=13TeV in 2015 and 2016, is reported. The absolute luminosity scale is measured for individual bunch crossings using beam-separation scans (the van der Meer method), with a relative precision of 1.3 and 1.0% in 2015 and 2016, respectively. The dominant sources of uncertainty are related to residual differences between the measured beam positions and the ones provided by the operational settings of the LHC magnets, the factorizability of the proton bunch spatial density functions in the coordinates transverse to the beam direction, and the modeling of the effect of electromagnetic interactions among protons in the colliding bunches. When applying the van der Meer calibration to the entire run periods, the integrated luminosities when CMS was fully operational are 2.27 and 36.3 fb-1 in 2015 and 2016, with a relative precision of 1.6 and 1.2%, respectively. These are among the most precise luminosity measurements at bunched-beam hadron colliders.
DOI: 10.1088/1748-0221/16/05/p05014
2021
Cited 75 times
Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC
The performance is presented of the reconstruction and identification algorithms for electrons and photons with the CMS experiment at the LHC. The reported results are based on proton-proton collision data collected at a center-of-mass energy of 13 TeV and recorded in 2016-2018, corresponding to an integrated luminosity of 136 fb$^{-1}$. Results obtained from lead-lead collision data collected at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV are also presented. Innovative techniques are used to reconstruct the electron and photon signals in the detector and to optimize the energy resolution. Events with electrons and photons in the final state are used to measure the energy resolution and energy scale uncertainty in the recorded events. The measured energy resolution for electrons produced in Z boson decays in proton-proton collision data ranges from 2 to 5%, depending on electron pseudorapidity and energy loss through bremsstrahlung in the detector material. The energy scale in the same range of energies is measured with an uncertainty smaller than 0.1 (0.3)% in the barrel (endcap) region in proton-proton collisions and better than 1 (3)% in the barrel (endcap) region in heavy ion collisions. The timing resolution for electrons from Z boson decays with the full 2016-2018 proton-proton collision data set is measured to be 200 ps.
DOI: 10.1007/jhep07(2021)208
2021
Cited 74 times
Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for physics beyond the standard model (SM) using electron or muon pairs with high invariant mass. A data set of proton-proton collisions collected by the CMS experiment at the LHC at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV from 2016 to 2018 corresponding to a total integrated luminosity of up to 140 fb − 1 is analyzed. No significant deviation is observed with respect to the SM background expectations. Upper limits are presented on the ratio of the product of the production cross section and the branching fraction to dileptons of a new narrow resonance to that of the Z boson. These provide the most stringent lower limits to date on the masses for various spin-1 particles, spin-2 gravitons in the Randall-Sundrum model, as well as spin-1 mediators between the SM and dark matter particles. Lower limits on the ultraviolet cutoff parameter are set both for four-fermion contact interactions and for the Arkani-Hamed, Dimopoulos, and Dvali model with large extra dimensions. Lepton flavor universality is tested at the TeV scale for the first time by comparing the dimuon and dielectron mass spectra. No significant deviation from the SM expectation of unity is observed.
DOI: 10.1088/1748-0221/15/10/p10017
2020
Cited 100 times
Performance of the CMS Level-1 trigger in proton-proton collisions at √<i>s</i> = 13 TeV
At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13 TeV. During Run 2 (years 2015-2018) the LHC eventually reached a luminosity of 2.1 $\times$ 10$^{34}$ cm$^{-2}$ s$^{-1}$, almost three times that reached during Run 1 (2009-2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016-2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals.
DOI: 10.1140/epjc/s10052-019-7593-7
2020
Cited 76 times
Search for production of four top quarks in final states with same-sign or multiple leptons in proton–proton collisions at $$\sqrt{s}=13$$ $$\,\text {TeV}$$
The standard model (SM) production of four top quarks ($\mathrm{t\bar{t}t\bar{t}}$) in proton-proton collision is studied by the CMS Collaboration. The data sample, collected during the 2016-2018 data taking of the LHC, corresponds to an integrated luminosity of 137 fb$^{-1}$ at a center-of-mass energy of 13 TeV. The events are required to contain two same-sign charged leptons (electrons or muons) or at least three leptons, and jets. The observed and expected significances for the $\mathrm{t\bar{t}t\bar{t}}$ signal are respectively 2.6 and 2.7 standard deviations, and the $\mathrm{t\bar{t}t\bar{t}}$ cross section is measured to be 12.6 $^{+5.8}_{-5.2}$ fb. The results are used to constrain the Yukawa coupling of the top quark to the Higgs boson, $y_{\mathrm{t}}$, yielding a limit of $|y_{\mathrm{t}}$ $/$ $y_{\mathrm{t}}^{\mathrm{SM}}|$ $<$ 1.7 at 95% confidence level, where $y_{\mathrm{t}}^{\mathrm{SM}}$ is the SM value of $y_{\mathrm{t}}$. They are also used to constrain the oblique parameter of the Higgs boson in an effective field theory framework, $\hat{H}$ $<$ 0.12. Limits are set on the production of a heavy scalar or pseudoscalar boson in Type-II two-Higgs-doublet and simplified dark matter models, with exclusion limits reaching 350-470 GeV and 350-550 GeV for scalar and pseudoscalar bosons, respectively. Upper bounds are also set on couplings of the top quark to new light particles.
DOI: 10.1088/1748-0221/15/06/p06005
2020
Cited 72 times
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at √s = 13TeV, corresponding to an integrated luminosity of 35.9 fb−1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.
DOI: 10.1007/jhep04(2020)188
2020
Cited 61 times
Measurement of properties of $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− decays and search for B0→ μ+μ− with the CMS experiment
Results are reported for the $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− branching fraction and effective lifetime and from a search for the decay B0→ μ+μ−. The analysis uses a data sample of proton-proton collisions accumulated by the CMS experiment in 2011, 2012, and 2016, with center-of-mass energies (integrated luminosities) of 7 TeV (5 fb−1), 8 TeV (20 fb−1), and 13 TeV (36 fb−1). The branching fractions are determined by measuring event yields relative to B+→ J/ψK+ decays (with J/ψ → μ+μ−), which results in the reduction of many of the systematic uncertainties. The decay $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− is observed with a significance of 5.6 standard deviations. The branching fraction is measured to be $$ \mathrm{\mathcal{B}}\left({\mathrm{B}}_{\mathrm{s}}^0\to {\upmu}^{+}{\upmu}^{-}\right)=\left[2.9\pm 0.7\left(\exp \right)\pm 0.2\left(\mathrm{frag}\right)\right]\times {10}^{-9} $$, where the first uncertainty combines the experimental statistical and systematic contributions, and the second is due to the uncertainty in the ratio of the $$ {\mathrm{B}}_{\mathrm{s}}^0 $$ and the B+ fragmentation functions. No significant excess is observed for the decay B0→ μ+μ−, and an upper limit of ℬ(B0 → μ+μ−) < 3.6 × 10−10 is obtained at 95% confidence level. The $$ {\mathrm{B}}_{\mathrm{s}}^0 $$→ μ+μ− effective lifetime is measured to be $$ {\tau}_{\upmu^{+}{\upmu}^{-}}={1.70}_{-0.44}^{+0.61} $$ ps. These results are consistent with standard model predictions.
DOI: 10.1103/physrevlett.124.131802
2020
Cited 60 times
Search for a Narrow Resonance Lighter than 200 GeV Decaying to a Pair of Muons in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search is presented for a narrow resonance decaying to a pair of oppositely charged muons using $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$ proton-proton collision data recorded at the LHC. In the 45--75 and 110--200 GeV resonance mass ranges, the search is based on conventional triggering and event reconstruction techniques. In the 11.5--45 GeV mass range, the search uses data collected with dimuon triggers with low transverse momentum thresholds, recorded at high rate by storing a reduced amount of trigger-level information. The data correspond to integrated luminosities of 137 and $96.6\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ for conventional and high-rate triggering, respectively. No significant resonant peaks are observed in the probed mass ranges. The search sets the most stringent constraints to date on a dark photon in the $\ensuremath{\sim}30--75$ and 110--200 GeV mass ranges.
DOI: 10.1088/1748-0221/15/09/p09018
2020
Cited 60 times
Pileup mitigation at CMS in 13 TeV data
With increasing instantaneous luminosity at the LHC come additional reconstruction challenges. At high luminosity, many collisions occur simultaneously within one proton-proton bunch crossing. The isolation of an interesting collision from the additional "pileup" collisions is needed for effective physics performance. In the CMS Collaboration, several techniques capable of mitigating the impact of these pileup collisions have been developed. Such methods include charged-hadron subtraction, pileup jet identification, isospin-based neutral particle "$\delta\beta$" correction, and, most recently, pileup per particle identification. This paper surveys the performance of these techniques for jet and missing transverse momentum reconstruction, as well as muon isolation. The analysis makes use of data corresponding to 35.9 fb$^{-1}$ collected with the CMS experiment in 2016 at a center-of-mass energy of 13 TeV. The performance of each algorithm is discussed for up to 70 simultaneous collisions per bunch crossing. Significant improvements are found in the identification of pileup jets, the jet energy, mass, and angular resolution, missing transverse momentum resolution, and muon isolation when using pileup per particle identification.
DOI: 10.1140/epjc/s10052-019-7493-x
2020
Cited 57 times
Searches for physics beyond the standard model with the $$M_{\mathrm {T2}}$$ variable in hadronic final states with and without disappearing tracks in proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$
Abstract Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton–proton collisions at a center-of-mass energy of $$13\,\text {Te}\text {V} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>13</mml:mn><mml:mspace /><mml:mrow><mml:mtext>Te</mml:mtext><mml:mspace /></mml:mrow></mml:mrow></mml:math> , collected by the CMS experiment at the LHC in 2016–2018 and corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mspace /><mml:msup><mml:mtext>fb</mml:mtext><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> . The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $$M_{\mathrm {T2}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>M</mml:mi><mml:mrow><mml:mi>T</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving R -parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
DOI: 10.1007/jhep11(2021)153
2021
Cited 46 times
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for new particles produced at the LHC in proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb − 1 , collected in 2017–2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb − 1 , collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.
DOI: 10.1007/jhep04(2021)123
2021
Cited 43 times
Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for phenomena beyond the standard model in final states with two oppositely charged same-flavor leptons and missing transverse momentum is presented. The search uses a data sample of proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, corresponding to an integrated luminosity of 137 fb − 1 , collected by the CMS experiment at the LHC. Three potential signatures of physics beyond the standard model are explored: an excess of events with a lepton pair, whose invariant mass is consistent with the Z boson mass; a kinematic edge in the invariant mass distribution of the lepton pair; and the nonresonant production of two leptons. The observed event yields are consistent with those expected from standard model backgrounds. The results of the first search allow the exclusion of gluino masses up to 1870 GeV, as well as chargino (neutralino) masses up to 750 (800) GeV, while those of the searches for the other two signatures allow the exclusion of light-flavor (bottom) squark masses up to 1800 (1600) GeV and slepton masses up to 700 GeV, respectively, at 95% confidence level within certain supersymmetry scenarios.
DOI: 10.1140/epjc/s10052-021-09200-x
2021
Cited 40 times
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$
Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_\mathrm{H}$ $=$ 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.
DOI: 10.1103/physrevd.105.092007
2022
Cited 32 times
Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for invisible decays of the Higgs boson produced via vector boson fusion (VBF) has been performed with 101 fb$^{-1}$ of proton-proton collisions delivered by the LHC at $\sqrt{s} =$ 13 TeV and collected by the CMS detector in 2017 and 2018. The sensitivity to the VBF production mechanism is enhanced by constructing two analysis categories, one based on missing transverse momentum, and a second based on the properties of jets. In addition to control regions with Z and W boson candidate events, a highly populated control region, based on the production of a photon in association with jets, is used to constrain the dominant irreducible background from the invisible decay of a Z boson produced in association with jets. The results of this search are combined with all previous measurements in the VBF topology, based on data collected in 2012 (at $\sqrt{s} =$ 8 TeV), 2015, and 2016, corresponding to integrated luminosities of 19.7, 2.3, and 36.3 fb$^{-1}$, respectively. The observed (expected) upper limit on the invisible branching fraction of the Higgs boson is found to be 0.18 (0.10) at the 95% confidence level, assuming the standard model production cross section. The results are also interpreted in the context of Higgs-portal models.
DOI: 10.1007/jhep07(2020)126
2020
Cited 49 times
Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $$ \sqrt{s} $$ = 13 TeV
A search for charged Higgs bosons (H$^\pm$) decaying into a top and a bottom quark in the all-jet final states is presented. The analysis uses LHC proton-proton collision data recorded with the CMS detector in 2016 at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess is observed above the expected background. Model-independent upper limits at 95% confidence level are set on the product of the H$^\pm$ production cross section and branching fraction in two scenarios. For production in association with a top quark, limits of 21.3 to 0.007 pb are obtained for H$^\pm$ masses in the range of 0.2 to 3 TeV. Combining this with a search in leptonic final states results in improved limits of 9.25 to 0.005 pb. The complementary $s$-channel production of an H$^\pm$ is investigated in the mass range of 0.8 to 3 TeV and the corresponding upper limits are 4.5 to 0.023 pb. These results are interpreted using different minimal supersymmetric extensions of the standard model.
DOI: 10.1007/jhep12(2019)061
2019
Cited 46 times
Measurements of differential Z boson production cross sections in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
Measurements are presented of the differential cross sections for Z bosons produced in proton-proton collisions at $\sqrt{s} =$ 13 TeV and decaying to muons and electrons. The data analyzed were collected in 2016 with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The measured fiducial inclusive product of cross section and branching fraction agrees with next-to-next-to-leading order quantum chromodynamics calculations. Differential cross sections of the transverse momentum $p_\mathrm{T}$, the optimized angular variable $\phi^*_\eta$, and the rapidity of lepton pairs are measured. The data are corrected for detector effects and compared to theoretical predictions using fixed order, resummed, and parton shower calculations. The uncertainties of the measured normalized cross sections are smaller than 0.5% for $\phi^*_\eta$ $<$ 0.5 and for $p_\mathrm{T}^\mathrm{Z}$ $<$ 50 GeV.
DOI: 10.1103/physrevlett.125.061801
2020
Cited 45 times
Measurements of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">¯</mml:mo></mml:mrow></mml:mover><mml:mi>H</mml:mi></mml:mrow></mml:math> Production and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> Structure of the Yukawa Interaction between the Higgs Boson and Top…
The first observation of the tt[over ¯]H process in a single Higgs boson decay channel with the full reconstruction of the final state (H→γγ) is presented, with a significance of 6.6 standard deviations (σ). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2σ. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy sqrt[s]=13 TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb^{-1}. The cross section times branching fraction of the tt[over ¯]H process is measured to be σ_{tt[over ¯]H}B_{γγ}=1.56_{-0.32}^{+0.34} fb, which is compatible with the standard model prediction of 1.13_{-0.11}^{+0.08} fb. The fractional contribution of the CP-odd component is measured to be f_{CP}^{Htt}=0.00±0.33.
DOI: 10.1007/jhep04(2020)171
2020
Cited 44 times
Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search is presented for additional scalar (H) or pseudoscalar (A) Higgs bosons decaying to a top quark pair in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected by the CMS experiment at the LHC. Final states with one or two charged leptons are considered. The invariant mass of the reconstructed top quark pair system and variables that are sensitive to the spin of the particles decaying into the top quark pair are used to search for signatures of the H or A bosons. The interference with the standard model top quark pair background is taken into account. A moderate signal-like deviation compatible with an A boson with a mass of 400 GeV is observed with a global significance of 1.9 standard deviations. New stringent constraints are reported on the strength of the coupling of the hypothetical bosons to the top quark, with the mass of the bosons ranging from 400 to 750 GeV and their total relative width from 0.5 to 25%. The results of the search are also interpreted in a minimal supersymmetric standard model scenario. Values of $m_\mathrm{A}$ from 400 to 700 GeV are probed, and a region with values of $\tan\beta$ below 1.0 to 1.5, depending on $m_\mathrm{A}$, is excluded at 95% confidence level.
DOI: 10.1007/jhep05(2020)032
2020
Cited 42 times
Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment
A search for direct top squark pair production is presented. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the LHC during 2016, 2017, and 2018, corresponding to an integrated luminosity of 137 fb−1. The search is carried out using events with a single isolated electron or muon, multiple jets, and large transverse momentum imbalance. The observed data are consistent with the expectations from standard model processes. Exclusions are set in the context of simplified top squark pair production models. Depending on the model, exclusion limits at 95% confidence level for top squark masses up to 1.2 TeV are set for a massless lightest supersymmetric particle, assumed to be the neutralino. For models with top squark masses of 1 TeV, neutralino masses up to 600 GeV are excluded.
DOI: 10.1140/epjc/s10052-020-08739-5
2021
Cited 39 times
Search for dark matter produced in association with a leptonically decaying $${\mathrm{Z}} $$ boson in proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$
A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton-proton collision data at a center-of-mass energy of 13 Te , collected by the CMS experiment at the LHC in 2016-2018, corresponding to an integrated luminosity of 137 fb-1 . The search uses the decay channels Z→ee and Z→μμ . No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.
DOI: 10.1088/2632-2153/ab9023
2020
Cited 38 times
A deep neural network to search for new long-lived particles decaying to jets
A tagging algorithm to identify jets that are significantly displaced from the proton-proton (pp) collision region in the CMS detector at the LHC is presented. Displaced jets can arise from the decays of long-lived particles (LLPs), which are predicted by several theoretical extensions of the standard model. The tagger is a multiclass classifier based on a deep neural network, which is parameterised according to the proper decay length $\mathrm{c}\tau_0$ of the LLP. A novel scheme is defined to reliably label jets from LLP decays for supervised learning. Samples of pp collision data, recorded by the CMS detector at a centre-of-mass energy of 13 TeV, and simulated events are used to train the neural network. Domain adaptation by backward propagation is performed to improve the simulation modelling of the jet class probability distributions observed in pp collision data. The potential performance of the tagger is demonstrated with a search for long-lived gluinos, a manifestation of split supersymmetric models. The tagger provides a rejection factor of 10 000 for jets from standard model processes, while maintaining an LLP jet tagging efficiency of 30-80% for gluinos with 1 mm $\leq$ $c\tau_0$ $\leq$ 10 m. The expected coverage of the parameter space for split supersymmetry is presented.
DOI: 10.1088/1748-0221/16/02/p02027
2021
Cited 34 times
The CMS Phase-1 pixel detector upgrade
The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.
DOI: 10.1140/epjc/s10052-020-08701-5
2021
Cited 30 times
Search for top squark pair production using dilepton final states in $${\text {p}}{\text {p}}$$ collision data collected at $$\sqrt{s}=13\,\text {TeV} $$
A search is presented for supersymmetric partners of the top quark (top squarks) in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum. The search uses data from proton-proton collisions at $\sqrt{s} =$ 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 137 fb$^{-1}$. Hypothetical signal events are efficiently separated from the dominant top quark pair production background with requirements on the significance of the missing transverse momentum and on transverse mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced lightest top squarks. For top squarks decaying exclusively to a top quark and a lightest neutralino, lower limits are placed at 95% confidence level on the masses of the top squark and the neutralino up to 925 and 450 GeV, respectively. If the decay proceeds via an intermediate chargino, the corresponding lower limits on the mass of the lightest top squark are set up to 850 GeV for neutralino masses below 420 GeV. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1.4 TeV and 900 GeV respectively for the top squark and the lightest neutralino.
DOI: 10.1103/physrevd.104.052001
2021
Cited 30 times
Search for top squark production in fully hadronic final states in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.
DOI: 10.1103/physrevd.108.012011
2023
Cited 7 times
Search for direct pair production of supersymmetric partners of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math> leptons in the final state with two hadronically decaying <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math> leptons and missing transverse momentum in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</…
A search for the direct production of a pair of $\ensuremath{\tau}$ sleptons, the supersymmetric partners of $\ensuremath{\tau}$ leptons, is presented. Each $\ensuremath{\tau}$ slepton is assumed to decay to a $\ensuremath{\tau}$ lepton and the lightest supersymmetric particle (LSP), which is assumed to be stable and to not interact in the detector, leading to an imbalance in the total reconstructed transverse momentum. The search is carried out in events identified as containing two $\ensuremath{\tau}$ leptons, each decaying to one or more hadrons and a neutrino, and significant transverse momentum imbalance. In addition to scenarios in which the $\ensuremath{\tau}$ sleptons decay promptly, the search also addresses scenarios in which the $\ensuremath{\tau}$ sleptons have sufficiently long lifetimes to give rise to nonprompt $\ensuremath{\tau}$ leptons. The data were collected in proton-proton collisions at a center-of-mass energy of $13\text{ }\text{ }\mathrm{TeV}$ at the CERN LHC with the CMS detector in 2016--2018, and correspond to an integrated luminosity of $138\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$. No significant excess is seen with respect to standard model expectations. Upper limits on cross sections for the pair production of $\ensuremath{\tau}$ sleptons are obtained in the framework of simplified models. In a scenario in which the $\ensuremath{\tau}$ sleptons are superpartners of left-handed $\ensuremath{\tau}$ leptons, and each undergoes a prompt decay to a $\ensuremath{\tau}$ lepton and a nearly massless LSP, $\ensuremath{\tau}$ slepton masses between 115 and 340 GeV are excluded. In a scenario in which the lifetime of the $\ensuremath{\tau}$ sleptons corresponds to $c{\ensuremath{\tau}}_{0}=0.1\text{ }\text{ }\mathrm{mm}$, where ${\ensuremath{\tau}}_{0}$ represents the mean proper lifetime of the $\ensuremath{\tau}$ slepton, masses between 150 and 220 GeV are excluded.
DOI: 10.1103/physrevd.100.072001
2019
Cited 40 times
Search for pair production of vectorlike quarks in the fully hadronic final state
The results of two searches for pair production of vectorlike T or B quarks in fully hadronic final states are presented, using data from the CMS experiment at a center-of-mass energy of 13 TeV. The data were collected at the LHC during 2016 and correspond to an integrated luminosity of 35.9 fb−1. A cut-based analysis specifically targets the bW decay mode of the T quark and allows for the reconstruction of the T quark candidates. In a second analysis, a multiclassification algorithm, the "boosted event shape tagger," is deployed to label candidate jets as originating from top quarks, and W, Z, and H. Candidate events are categorized according to the multiplicities of identified jets, and the scalar sum of all observed jet momenta is used to discriminate signal events from the quantum chromodynamics multijet background. Both analyses probe all possible branching fraction combinations of the T and B quarks and set limits at 95% confidence level on their masses, ranging from 740 to 1370 GeV. These results represent a significant improvement relative to existing searches in the fully hadronic final state.1 MoreReceived 27 June 2019DOI:https://doi.org/10.1103/PhysRevD.100.072001Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2019 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasHypothetical particle physics modelsPhysical SystemsQuarksTechniquesHadron collidersParticles & Fields
DOI: 10.1016/j.physletb.2019.135087
2020
Cited 36 times
Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.25em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb−1. The 2μ2τ and 4τ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4τ final state, σB, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on σB, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.
DOI: 10.1007/jhep03(2020)056
2020
Cited 34 times
Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $$ \sqrt{\mathrm{s}} $$ = 13 TeV
A bstract A measurement of the inclusive cross section of top quark pair production in association with a Z boson using proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC is performed. The data sample corresponds to an integrated luminosity of 77.5 fb − 1 , collected by the CMS experiment during 2016 and 2017. The measurement is performed using final states containing three or four charged leptons (electrons or muons), and the Z boson is detected through its decay to an oppositely charged lepton pair. The production cross section is measured to be σ ( $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mi>Z</mml:mi> </mml:math> ) = 0 . 95 ± 0 . 05 (stat) ± 0 . 06 (syst) pb. For the first time, differential cross sections are measured as functions of the transverse momentum of the Z boson and the angular distribution of the negatively charged lepton from the Z boson decay. The most stringent direct limits to date on the anomalous couplings of the top quark to the Z boson are presented, including constraints on the Wilson coefficients in the framework of the standard model effective field theory.
DOI: 10.1016/j.physletb.2020.135992
2021
Cited 24 times
Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at s=13TeV collected with the CMS detector in 2016–2018, and corresponding to an integrated luminosity of 137fb−1. The search is performed in the fully leptonic final state ZZ→ℓℓℓ′ℓ′, where ℓ,ℓ′=e,μ. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is σEW(pp→ZZjj→ℓℓℓ′ℓ′jj)=0.33−0.10+0.11(stat)−0.03+0.04(syst)fb in the most inclusive volume, in agreement with the standard model prediction of 0.275±0.021fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.
DOI: 10.1016/j.physletb.2020.136036
2021
Cited 23 times
Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies
Measurements of the second Fourier harmonic coefficient ($v_2$) of the azimuthal distributions of prompt and nonprompt D$^0$ mesons produced in pp and pPb collisions are presented. Nonprompt D$^0$ mesons come from beauty hadron decays. The data samples are collected by the CMS experiment at nucleon-nucleon center-of-mass energies of 13 and 8.16 TeV, respectively. In high multiplicity pp collisions, $v_2$ signals for prompt charm hadrons are reported for the first time, and are found to be comparable to those for light-flavor hadron species over a transverse momentum ($p_\mathrm{T}$) range of 2-6 GeV. Compared at similar event multiplicities, the prompt D$^0$ meson $v_2$ values in pp and pPb collisions are similar in magnitude. The $v_2$ values for open beauty hadrons are extracted for the first time via nonprompt D$^0$ mesons in pPb collisions. For $p_\mathrm{T}$ in the range of 2-5 GeV, the results suggest that $v_2$ for nonprompt D$^0$ mesons are smaller than those for prompt D$^0$ mesons. These new measurements indicate a positive charm hadron $v_2$ in pp collisions and suggest a mass dependence in $v_2$ between charm and beauty hadrons in the pPb system. These results provide insights into the origin of heavy-flavor quark collectivity in small systems.
DOI: 10.1103/physrevd.104.052004
2021
Cited 23 times
Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state
Studies of $CP$ violation and anomalous couplings of the Higgs boson to vector bosons and fermions are presented. The data were acquired by the CMS experiment at the LHC and correspond to an integrated luminosity of $137\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ at a proton-proton collision energy of 13 TeV. The kinematic effects in the Higgs boson's four-lepton decay $H\ensuremath{\rightarrow}4\ensuremath{\ell}$ and its production in association with two jets, a vector boson, or top quarks are analyzed, using a full detector simulation and matrix element techniques to identify the production mechanisms and to increase sensitivity to the tensor structure of the Higgs boson interactions. A simultaneous measurement is performed of up to five Higgs boson couplings to electroweak vector bosons ($HVV$), two couplings to gluons ($Hgg$), and two couplings to top quarks ($Htt$). The $CP$ measurement in the $Htt$ interaction is combined with the recent measurement in the $H\ensuremath{\rightarrow}\ensuremath{\gamma}\ensuremath{\gamma}$ channel. The results are presented in the framework of anomalous couplings and are also interpreted in the framework of effective field theory, including the first study of $CP$ properties of the $Htt$ and effective $Hgg$ couplings from a simultaneous analysis of the gluon fusion and top-associated processes. The results are consistent with the standard model of particle physics.
DOI: 10.1007/jhep04(2022)091
2022
Cited 15 times
Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for supersymmetry in events with two or three low-momentum leptons and missing transverse momentum is performed. The search uses proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV collected in the three-year period 2016–2018 by the CMS experiment at the LHC and corresponding to an integrated luminosity of up to 137 fb − 1 . The data are found to be in agreement with expectations from standard model processes. The results are interpreted in terms of electroweakino and top squark pair production with a small mass difference between the produced supersymmetric particles and the lightest neutralino. For the electroweakino interpretation, two simplified models are used, a wino-bino model and a higgsino model. Exclusion limits at 95% confidence level are set on $$ {\overset{\sim }{\upchi}}_2^0/{\overset{\sim }{\upchi}}_1^{\pm } $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mover> <mml:mi>χ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>2</mml:mn> <mml:mn>0</mml:mn> </mml:msubsup> <mml:mo>/</mml:mo> <mml:msubsup> <mml:mover> <mml:mi>χ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>1</mml:mn> <mml:mo>±</mml:mo> </mml:msubsup> </mml:math> masses up to 275 GeV for a mass difference of 10 GeV in the wino-bino case, and up to 205(150) GeV for a mass difference of 7.5 (3) GeV in the higgsino case. The results for the higgsino are further interpreted using a phenomenological minimal supersymmetric standard model, excluding the higgsino mass parameter μ up to 180 GeV with the bino mass parameter M 1 at 800 GeV. In the top squark interpretation, exclusion limits are set at top squark masses up to 540 GeV for four-body top squark decays and up to 480 GeV for chargino-mediated decays with a mass difference of 30 GeV.
DOI: 10.1103/physrevlett.129.081802
2022
Cited 14 times
Search for Higgs Boson Pair Production in the Four <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>b</mml:mi></mml:math> Quark Final State in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for pairs of Higgs bosons produced via gluon and vector boson fusion is presented, focusing on the four b quark final state. The data sample consists of proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC, and corresponds to an integrated luminosity of 138 fb^{-1}. No deviation from the background-only hypothesis is observed. A 95% confidence level upper limit on the Higgs boson pair production cross section is observed at 3.9 times the standard model prediction for an expected value of 7.8. Constraints are also set on the modifiers of the Higgs field self-coupling, κ_{λ}, and of the coupling of two Higgs bosons to two vector bosons, κ_{2 V}. The observed (expected) allowed intervals at the 95% confidence level are -2.3<κ_{λ}<9.4 (-5.0<κ_{λ}<12.0) and -0.1<κ_{2 V}<2.2 (-0.4<κ_{2 V}<2.5). These are the most stringent observed constraints to date on the HH production cross section and on the κ_{2 V } coupling.
DOI: 10.1007/jhep05(2023)233
2023
Cited 5 times
Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract Results are presented from a search for the Higgs boson decay H → Zγ, where Z → ℓ + ℓ − with ℓ = e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb − 1 . Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength μ , defined as the product of the cross section and the branching fraction $$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>pp</mml:mi> <mml:mo>→</mml:mo> <mml:mi>H</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>Zγ</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:math> relative to the standard model prediction, is extracted from a simultaneous fit to the ℓ + ℓ − γ invariant mass distributions in all categories and is measured to be μ = 2 . 4 ± 0 . 9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to $$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>pp</mml:mi> <mml:mo>→</mml:mo> <mml:mi>H</mml:mi> </mml:mrow> </mml:mfenced> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>Zγ</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mn>0.21</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.08</mml:mn> </mml:math> pb. The observed (expected) upper limit at 95% confidence level on μ is 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions $$ \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>Zγ</mml:mi> </mml:mrow> </mml:mfenced> <mml:mo>/</mml:mo> <mml:mi>B</mml:mi> <mml:mfenced> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>→</mml:mo> <mml:mi>γγ</mml:mi> </mml:mrow> </mml:mfenced> </mml:math> is measured to be $$ {1.5}_{-0.6}^{+0.7} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mn>1.5</mml:mn> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.6</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.7</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> , which agrees with the standard model prediction of 0 . 69 ± 0 . 04 at the 1.5 standard deviation level.
DOI: 10.1007/jhep08(2020)139
2020
Cited 29 times
Search for a light pseudoscalar Higgs boson in the boosted μμττ final state in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for a light pseudoscalar Higgs boson (a) decaying from the 125 GeV (or a heavier) scalar Higgs boson (H) is performed using the 2016 LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, collected by the CMS experiment. The analysis considers gluon fusion and vector boson fusion production of the H, followed by the decay H $\to$ aa $\to$ $\mu\mu\tau\tau$, and considers pseudoscalar masses in the range 3.6 $\lt$ $m_\mathrm{a}$ $\lt$ 21 GeV. Because of the large mass difference between the H and the a bosons and the small masses of the a boson decay products, both the $\mu\mu$ and the $\tau\tau$ pairs have high Lorentz boost and are collimated. The $\tau\tau$ reconstruction efficiency is increased by modifying the standard technique for hadronic $\tau$ lepton decay reconstruction to account for a nearby muon. No significant signal is observed. Model-independent limits are set at 95% confidence level, as a function of $m_\mathrm{a}$, on the branching fraction ($\mathcal{B}$) for H $\to$ aa $\to$ $\mu\mu\tau\tau$, down to 1.5 (2.0) $\times$ 10$^{-4}$ for $m_\mathrm{H} =$ 125 (300) GeV. Model-dependent limits on $\mathcal{B}$(H $\to$ aa) are set within the context of two Higgs doublets plus singlet models, with the most stringent results obtained for Type-III models. These results extend current LHC searches for heavier a bosons that decay to resolved lepton pairs and provide the first such bounds for an H boson with a mass above 125 GeV.
DOI: 10.1007/jhep03(2020)051
2020
Cited 27 times
Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb − 1 of proton-proton collisions at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, collected with the CMS detector at the LHC in 2016–2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15–75 and 108–340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.
DOI: 10.1140/epjc/s10052-020-7739-7
2020
Cited 27 times
Search for direct pair production of supersymmetric partners to the $${\uptau }_{}^{}$$ lepton in proton–proton collisions at $$\sqrt{s}=13\,\text {TeV} $$
A search is presented for τ slepton pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV . The search is carried out in events containing two τ leptons in the final state, on the assumption that each τ slepton decays primarily to a τ lepton and a neutralino. Events are considered in which each τ lepton decays to one or more hadrons and a neutrino, or in which one of the τ leptons decays instead to an electron or a muon and two neutrinos. The data, collected with the CMS detector in 2016 and 2017, correspond to an integrated luminosity of 77.2 fb-1 . The observed data are consistent with the standard model background expectation. The results are used to set 95% confidence level upper limits on the cross section for τ slepton pair production in various models for τ slepton masses between 90 and 200 GeV and neutralino masses of 1, 10, and 20 GeV . In the case of purely left-handed τ slepton production and decay to a τ lepton and a neutralino with a mass of 1 GeV , the strongest limit is obtained for a τ slepton mass of 125 GeV at a factor of 1.14 larger than the theoretical cross section.
DOI: 10.1007/jhep03(2020)055
2020
Cited 27 times
Search for new neutral Higgs bosons through the $$ \mathrm{H}\to \mathrm{ZA}\to {\ell}^{+}{\ell}^{-}\mathrm{b}\overline{\mathrm{b}} $$ process in pp collisions at $$ \sqrt{s} $$ = 13 TeV
A bstract This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb − 1 . Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model.
DOI: 10.1016/j.physletb.2020.135285
2020
Cited 26 times
Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="normal">t</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">t</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover><mml:mi mathvariant="normal">b</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="normal">b</mml:mi></mml:mrow><mml:mo>‾</mml:mo></mml:mover></mml:math> production cross section in the all-jet final state in pp collisions at <mml:math …
A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat) ${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.
DOI: 10.1007/jhep06(2020)076
2020
Cited 25 times
Measurement of the cross section for electroweak production of a Z boson, a photon and two jets in proton-proton collisions at $$ \sqrt{\mathrm{s}} $$ = 13 TeV and constraints on anomalous quartic couplings
A measurement is presented of the cross section for electroweak production of a Z boson and a photon in association with two jets (Z$\gamma$jj) in proton-proton collisions. The Z boson candidates are selected through their decay into a pair of electrons or muons. The process of interest, electroweak Z$\gamma$jj production, is isolated by selecting events with a large dijet mass and a large pseudorapidity gap between the two jets. The measurement is based on data collected at the CMS experiment at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed significance of the signal is 3.9 standard deviations, where a significance of 5.2 standard deviations is expected in the standard model. These results are combined with published results by CMS at $\sqrt{s} =$ 8 TeV, which leads to observed and expected respective significances of 4.7 and 5.5 standard deviations. From the 13 TeV data, a value is obtained for the signal strength of electroweak Z$\gamma$jj production and bounds are given on quartic vector boson interactions in the framework of dimension-eight effective field theory operators.
DOI: 10.1016/j.physletb.2020.136018
2021
Cited 22 times
Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn></mml:math> TeV
The first measurements of production cross sections of polarized same-sign W$^\pm$W$^\pm$ boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W$^\pm$W$^\pm$ scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88) fb is set on the production cross section for longitudinally polarized same-sign W$^\pm$W$^\pm$ boson pairs. The electroweak production of same-sign W$^\pm$W$^\pm$ boson pairs with at least one of the W bosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations.
DOI: 10.1140/epjc/s10052-020-08817-8
2021
Cited 20 times
Measurements of $${\mathrm{p}} {\mathrm{p}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} $$ production cross sections and constraints on anomalous triple gauge couplings at $$\sqrt{s} = 13\,\text {TeV} $$
The production of Z boson pairs in proton-proton ( pp ) collisions, pp→(Z/γ∗)(Z/γ∗)→2ℓ2ℓ' , where ℓ,ℓ'=e or μ , is studied at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137 fb-1 , collected during 2016-2018. The ZZ production cross section, σtot(pp→ZZ)=17.4±0.3(stat)±0.5(syst)±0.4(theo)±0.3(lumi) pb , measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region 60<mℓ+ℓ-<120GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZγ couplings.
DOI: 10.1140/epjc/s10052-021-09721-5
2021
Cited 19 times
Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at $$\sqrt{s} = 13\,\text {Te}\text {V} $$
Abstract A combination of searches for top squark pair production using proton–proton collision data at a center-of-mass energy of 13 $$\,\text {Te}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Te</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> at the CERN LHC, corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:msup> <mml:mtext>fb</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> for a massless neutralino, and a neutralino mass up to 700 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> for a top squark mass of 1150 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> . Top squarks with masses from 145 to 295 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> , for neutralino masses from 0 to 100 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> , with a mass difference between the top squark and the neutralino in a window of 30 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 $$\,\text {Ge}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mrow> <mml:mtext>Ge</mml:mtext> <mml:mspace /> </mml:mrow> </mml:mrow> </mml:math> .
DOI: 10.1140/epjc/s10052-022-10127-0
2022
Cited 13 times
Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at $$\sqrt{s}=13\,\text {TeV} $$
A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a Z boson. The search uses proton-proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$, at a center-of-mass energy $\sqrt{s} =$ 13 TeV. No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported.
DOI: 10.1140/epjc/s10052-022-10027-3
2022
Cited 11 times
Search for long-lived particles decaying to leptons with large impact parameter in proton–proton collisions at $$\sqrt{s} = 13\,\text {Te}\text {V} $$
A search for new long-lived particles decaying to leptons using proton-proton collision data produced by the CERN LHC at $\sqrt{s}$ = 13 TeV is presented. Events are selected with two leptons (an electron and a muon, two electrons, or two muons) that both have transverse impact parameter values between 0.01 and 10 cm and are not required to form a common vertex. Data used for the analysis were collected with the CMS detector in 2016, 2017, and 2018, and correspond to an integrated luminosity of 118 (113) fb$^{-1}$ in the ee channel (e$\mu$ and $\mu\mu$ channels). The search is designed to be sensitive to a wide range of models with displaced e$\mu$, ee, and $\mu\mu$ final states. The results constrain several well-motivated models involving new long-lived particles that decay to displaced leptons. For some areas of the available phase space, these are the most stringent constraints to date.
DOI: 10.1103/physrevlett.129.032001
2022
Cited 11 times
Search for Flavor-Changing Neutral Current Interactions of the Top Quark and Higgs Boson in Final States with Two Photons in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb^{-1}. No significant excess above the background prediction is observed. Upper limits on the branching fractions (B) of the top quark decaying to a Higgs boson and an up (u) or charm (c) quark are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019% (0.031%) for B(t→Hu) and 0.073% (0.051%) for B(t→Hc). These are the strictest upper limits yet determined.
DOI: 10.1140/epjc/s10052-023-11452-8
2023
Cited 4 times
Measurements of Higgs boson production in the decay channel with a pair of $$\uptau $$ leptons in proton–proton collisions at $$\sqrt{s}=13$$ TeV
Abstract Measurements of Higgs boson production, where the Higgs boson decays into a pair of $$\uptau $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>τ</mml:mi> </mml:math> leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of "Equation missing"<!-- image only, no MathML or LaTex -->, corresponding to an integrated luminosity of 138 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:msup> <mml:mtext>fb</mml:mtext> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to $$\uptau $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>τ</mml:mi> </mml:math> leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be $$0.82\pm 0.11$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.82</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.11</mml:mn> </mml:mrow> </mml:math> for inclusive Higgs boson production, $$0.67\pm 0.19$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.67</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.19</mml:mn> </mml:mrow> </mml:math> ( $$0.81\pm 0.17$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>0.81</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.17</mml:mn> </mml:mrow> </mml:math> ) for the production mainly via gluon fusion (vector boson fusion), and $$1.79\pm 0.45$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1.79</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.45</mml:mn> </mml:mrow> </mml:math> for vector boson associated Higgs boson production.
DOI: 10.1140/epjc/s10052-021-09236-z
2021
Cited 17 times
MUSiC: a model-unspecific search for new physics in proton–proton collisions at $$\sqrt{s} = 13\,\text {TeV} $$
Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV , corresponding to an integrated luminosity of 35.9 fb-1 , are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.
DOI: 10.1140/epjc/s10052-021-09472-3
2021
Cited 17 times
Search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector boson pairs in proton–proton collisions at $$\sqrt{s} = 13\,{\text {TeV}} $$
Abstract A search for charged Higgs bosons produced in vector boson fusion processes and decaying into vector bosons, using proton–proton collisions at $$\sqrt{s}=13\,{\text {TeV}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> <mml:mo>=</mml:mo> <mml:mn>13</mml:mn> <mml:mspace /> <mml:mtext>TeV</mml:mtext> </mml:mrow> </mml:math> at the LHC, is reported. The data sample corresponds to an integrated luminosity of 137 $$\,{\text {fb}}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:msup> <mml:mrow> <mml:mtext>fb</mml:mtext> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> collected with the CMS detector. Events are selected by requiring two or three electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. No excess of events with respect to the standard model background predictions is observed. Model independent upper limits at 95% confidence level are reported on the product of the cross section and branching fraction for vector boson fusion production of charged Higgs bosons as a function of mass, from 200 to 3000 $$\,{\text {GeV}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mspace /> <mml:mtext>GeV</mml:mtext> </mml:mrow> </mml:math> . The results are interpreted in the context of the Georgi–Machacek model.
DOI: 10.1103/physrevlett.127.122001
2021
Cited 17 times
Observation of Forward Neutron Multiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
The first measurement of the dependence of $\gamma\gamma$ $\to$ $\mu^{+}\mu^{-}$ production on the multiplicity of neutrons emitted very close to the beam direction in ultraperipheral heavy ion collisions is reported. Data for lead-lead interactions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV, with an integrated luminosity of approximately 1.5 nb$^{-1}$, were collected using the CMS detector at the LHC. The azimuthal correlations between the two muons in the invariant mass region 8 $\lt$ $m_{\mu\mu}$ $\lt$ 60 GeV are extracted for events including 0, 1, or at least 2 neutrons detected in the forward pseudorapidity range $|\eta|$ $\gt$ 8.3. The back-to-back correlation structure from leading-order photon-photon scattering is found to be significantly broader for events with a larger number of emitted neutrons from each nucleus, corresponding to interactions with a smaller impact parameter. This observation provides a data-driven demonstration that the average transverse momentum of photons emitted from relativistic heavy ions has an impact parameter dependence. These results provide new constraints on models of photon-induced interactions in ultraperipheral collisions. They also provide a baseline to search for possible final-state effects on lepton pairs caused by traversing a quark-gluon plasma produced in hadronic heavy ion collisions.
DOI: 10.1103/physrevd.104.092013
2021
Cited 17 times
Measurement of differential <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">¯</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:math> production cross sections in the full kinematic range using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>lepton</mml:mi><mml:mo>+</mml:mo><mml:mtext>jets</mml:mtext></…
Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.
DOI: 10.1007/jhep03(2019)119
2019
Cited 22 times
Interference effects in $$ t\overline{t} $$ production at the LHC as a window on new physics
A bstract Many extensions of the Standard Model (SM) contain (pseudo)scalar bosons with masses in the TeV range. At hadron colliders, such particles would predominantly be produced in gluon fusion and would decay into top quark pair final sates, a signal that interferes with the large QCD background $$ gg\to t\overline{t} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>gg</mml:mi> <mml:mo>→</mml:mo> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> . This phenomenon is of interest for searches for by the LHC experiments. Here, we consider the signal and background interference in this process and study it in various benchmark scenarios, including models with extra singlet (pseudo)scalar resonances, two-Higgs doublet models (2HDM), and the minimal supersymmetric extension of the SM with parameters chosen to obtain the measured light Higgs mass (the hMSSM). We allow for the possible exchanges of beyond the SM vector-like particles as well as scalar quarks. We calculate the possible interference effects including realistic estimates of the attainable detection efficiency and mass resolution. Studies of our benchmark scenarios indicate that searches with an LHC detector could permit the observation of the $$ t\overline{t} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> final states or constrain significantly large regions of the parameter spaces of the benchmark scenarios.
DOI: 10.1103/physrevlett.123.131802
2019
Cited 21 times
Search for a Light Charged Higgs Boson Decaying to a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math> Boson and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:math> -Odd Higgs Boson in Final States with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>e</mml:mi><mml:mi>μ</mml:mi><mml:mi>μ</mml:mi></mml:math> or <mml:math xmlns:mml="http…
A search for a light charged Higgs boson (H+) decaying to a W boson and a CP-odd Higgs boson (A) in final states with eμμ or μμμ is performed using data from pp collisions at √s=13 TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb−1. In this search, it is assumed that the H+ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H+ boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H+ boson is found. Upper limits at 95% confidence level are obtained on the combined branching fraction for the decay chain, t→bH+→bW+A→bW+μ+μ−, of 1.9×10−6 to 8.6×10−6, depending on the masses of the H+ and A bosons. These are the first limits for these decay modes of the H+ and A bosons.Received 18 May 2019Revised 19 July 2019DOI:https://doi.org/10.1103/PhysRevLett.123.131802Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2019 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Physical SystemsHiggs bosonsHypothetical gauge bosonsTop quarkTechniquesHadron collidersParticles & Fields
DOI: 10.1016/j.physletb.2019.134992
2019
Cited 21 times
Search for MSSM Higgs bosons decaying to μ+μ− in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search is performed for neutral non-standard-model Higgs bosons decaying to two muons in the context of the minimal supersymmetric standard model (MSSM). Proton-proton collision data recorded by the CMS experiment at the CERN Large Hadron Collider at a center-of-mass energy of 13 TeV were used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is sensitive to neutral Higgs bosons produced via the gluon fusion process or in association with a $\mathrm{b\overline{b}}$ quark pair. No significant deviations from the standard model expectation are observed. Upper limits at 95% confidence level are set in the context of the $m_\mathrm{h}^{\text{mod+}}$ and phenomenological MSSM scenarios on the parameter $\tan\beta$ as a function of the mass of the pseudoscalar A boson, in the range from 130 to 600 GeV. The results are also used to set a model-independent limit on the product of the branching fraction for the decay into a muon pair and the cross section for the production of a scalar neutral boson, either via gluon fusion, or in association with b quarks, in the mass range from 130 to 1000 GeV.
DOI: 10.1016/j.physletb.2019.134952
2019
Cited 20 times
Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons
A statistical combination of searches for heavy resonances decaying to pairs of bosons or leptons is presented. The data correspond to an integrated luminosity of 35.9 fb−1 collected during 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. The data are found to be consistent with expectations from the standard model background. Exclusion limits are set in the context of models of spin-1 heavy vector triplets and of spin-2 bulk gravitons. For mass-degenerate W′ and Z′ resonances that predominantly couple to the standard model gauge bosons, the mass exclusion at 95% confidence level of heavy vector bosons is extended to 4.5 TeV as compared to 3.8 TeV determined from the best individual channel. This excluded mass increases to 5.0 TeV if the resonances couple predominantly to fermions.
DOI: 10.1103/physrevlett.124.041803
2020
Cited 20 times
Search for Supersymmetry with a Compressed Mass Spectrum in Events with a Soft <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math> Lepton, a Highly Energetic Jet, and Large Missing Transverse Momentum in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:…
The first search for supersymmetry in events with an experimental signature of one soft, hadronically decaying τ lepton, one energetic jet from initial-state radiation, and large transverse momentum imbalance is presented. These event signatures are consistent with direct or indirect production of scalar τ leptons (τ[over ˜]) in supersymmetric models that exhibit coannihilation between the τ[over ˜] and the lightest neutralino (χ[over ˜]_{1}^{0}), and that could generate the observed relic density of dark matter. The data correspond to an integrated luminosity of 77.2 fb^{-1} of proton-proton collisions at sqrt[s]=13 TeV collected with the CMS detector at the LHC in 2016 and 2017. The results are interpreted in a supersymmetric scenario with a small mass difference (Δm) between the chargino (χ[over ˜]_{1}^{±}) or next-to-lightest neutralino (χ[over ˜]_{2}^{0}), and the χ[over ˜]_{1}^{0}. The mass of the τ[over ˜] is assumed to be the average of the χ[over ˜]_{1}^{±} and χ[over ˜]_{1}^{0} masses. The data are consistent with standard model background predictions. Upper limits at 95% confidence level are set on the sum of the χ[over ˜]_{1}^{±}, χ[over ˜]_{2}^{0}, and τ[over ˜] production cross sections for Δm(χ[over ˜]_{1}^{±},χ[over ˜]_{1}^{0})=50 GeV, resulting in a lower limit of 290 GeV on the mass of the χ[over ˜]_{1}^{±}, which is the most stringent to date and surpasses the bounds from the LEP experiments.
DOI: 10.1103/physrevd.102.072001
2020
Cited 20 times
Search for a light charged Higgs boson in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>H</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mo stretchy="false">→</mml:mo><mml:mi>c</mml:mi><mml:mi>s</mml:mi></mml:math> channel in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext…
A search is conducted for a low-mass charged Higgs boson produced in a top quark decay and subsequently decaying into a charm and a strange quark. The data sample was recorded in proton-proton collisions at √s=13 TeV by the CMS experiment at the LHC and corresponds to an integrated luminosity of 35.9 fb−1. The search is performed in the process of top quark pair production, where one top quark decays to a bottom quark and a charged Higgs boson and the other to a bottom quark and a W boson. With the W boson decaying to a charged lepton (electron or muon) and a neutrino, the final state comprises an isolated lepton, missing transverse momentum, and at least four jets, of which two are tagged as b jets. To enhance the search sensitivity, one of the jets originating from the charged Higgs boson is required to satisfy a charm tagging selection. No significant excess beyond standard model predictions is found in the dijet invariant mass distribution. An upper limit in the range 1.68%–0.25% is set on the branching fraction of the top quark decay to the charged Higgs boson and bottom quark for a charged Higgs boson mass between 80 and 160 GeV.Received 18 May 2020Accepted 19 August 2020DOI:https://doi.org/10.1103/PhysRevD.102.072001Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2020 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Hypothetical gauge bosonsPhysical SystemsGauge bosonsHypothetical gauge bosonsPhysical SystemsHypothetical particlesHypothetical gauge bosonsPhysical SystemsHiggs bosonsHypothetical gauge bosonsTechniquesHadron collidersParticles & Fields
DOI: 10.1103/physrevlett.125.151802
2020
Cited 19 times
Observation of the Production of Three Massive Gauge Bosons at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
The first observation is reported of the combined production of three massive gauge bosons (VVV with V=W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis is based on a data sample recorded by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 137 fb−1. The searches for individual WWW, WWZ, WZZ, and ZZZ production are performed in final states with three, four, five, and six leptons (electrons or muons), or with two same-sign leptons plus one or two jets. The observed (expected) significance of the combined VVV production signal is 5.7 (5.9) standard deviations and the corresponding measured cross section relative to the standard model prediction is 1.02+0.26−0.23. The significances of the individual WWW and WWZ production are 3.3 and 3.4 standard deviations, respectively. Measured production cross sections for the individual triboson processes are also reported.Received 19 June 2020Accepted 24 August 2020DOI:https://doi.org/10.1103/PhysRevLett.125.151802Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2020 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasW & Z bosonsTechniquesHadron collidersParticles & Fields
DOI: 10.1103/physrevd.102.092012
2020
Cited 19 times
Measurements of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>W</mml:mi></mml:math> boson rapidity, helicity, double-differential cross sections, and charge asymmetry in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><…
The differential cross section and charge asymmetry for inclusive W boson production at $\sqrt{s} =$ 13 TeV is measured for the two transverse polarization states as a function of the W boson absolute rapidity. The measurement uses events in which a W boson decays to a neutrino and either a muon or an electron. The data sample of proton-proton collisions recorded with the CMS detector at the LHC in 2016 corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross section and its value normalized to the total inclusive W boson production cross section are measured over the rapidity range $|y_\mathrm{W}|$ $\lt$ 2.5. In addition to the total fiducial cross section, the W boson double-differential cross section, d$^2\sigma$/d$p^\ell_\mathrm{T}$d$|\eta|$ and the charge asymmetry are measured as functions of the charged lepton transverse momentum and pseudorapidity. The precision of these measurements is used to constrain the parton distribution functions of the proton using the next-to-leading order NNPDF3.0 set.
DOI: 10.1007/jhep03(2020)065
2020
Cited 18 times
Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is performed for a pseudoscalar Higgs boson, A, decaying into a 125 GeV Higgs boson h and a Z boson. The h boson is specifically targeted in its decay into a pair of tau leptons, while the Z boson decays into a pair of electrons or muons. A data sample of proton-proton collisions collected by the CMS experiment at the LHC at $$ \sqrt{s} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:mi>s</mml:mi> </mml:msqrt> </mml:math> = 13 TeV is used, corresponding to an integrated luminosity of 35.9 fb − 1 . No excess above the standard model background expectations is observed in data. A model-independent upper limit is set on the product of the gluon fusion production cross section for the A boson and the branching fraction to Zh → ℓℓττ . The observed upper limit at 95% confidence level ranges from 27 to 5 fb for A boson masses from 220 to 400 GeV, respectively. The results are used to constrain the extended Higgs sector parameters for two benchmark scenarios of the minimal supersymmetric standard model.
DOI: 10.1007/s41781-020-00041-z
2020
Cited 18 times
A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
Abstract We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of $$\sqrt{s}=13\,\text {TeV} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mspace /><mml:mtext>TeV</mml:mtext></mml:mrow></mml:math> at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mspace /><mml:msup><mml:mtext>fb</mml:mtext><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to $$\hbox {b}\bar{\hbox {b}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>b</mml:mtext><mml:mover><mml:mrow><mml:mtext>b</mml:mtext></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:math> .
DOI: 10.1016/j.physletb.2022.137397
2022
Cited 9 times
Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV
Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into \muplusmuminus in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at$\sqrt{s_\mathrm{NN}}$ = 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S)) \gt R_\mathrm{pPb}(\Upsilon(2S)) \gt R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon \lt $ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert \lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.
DOI: 10.1140/epjc/s10052-023-11630-8
2023
Cited 3 times
CMS pythia 8 colour reconnection tunes based on underlying-event data
New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the PYTHIA 8 event generator, are obtained based on the default CMS PYTHIA 8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies $\sqrt{s}$ = 7 and 13 TeV, and by the CDF experiment at 1.96 TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13 TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair ($\mathrm{t\bar{t}}$) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of $\mathrm{t\bar{t}}$ events in the semileptonic channel at 13 TeV.
DOI: 10.1103/physrevd.100.112003
2019
Cited 19 times
Search for long-lived particles using delayed photons in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for long-lived particles decaying to photons and weakly interacting particles, using proton-proton collision data at $\sqrt{s} =$ 13 TeV collected by the CMS experiment in 2016-2017 is presented. The data set corresponds to an integrated luminosity of 77.4 fb$^{-1}$. Results are interpreted in the context of supersymmetry with gauge-mediated supersymmetry breaking, where the neutralino is long-lived and decays to a photon and a gravitino. Limits are presented as a function of the neutralino proper decay length and mass. For neutralino proper decay lengths of 0.1, 1, 10, and 100 m, masses up to 320, 525, 360, and 215 GeV are excluded at 95% confidence level, respectively. We extend the previous best limits in the neutralino proper decay length by up to one order of magnitude, and in the neutralino mass by up to 100 GeV.
DOI: 10.1140/epjc/s10052-019-7541-6
2020
Cited 17 times
Evidence for $$\text {W}\text {W}$$ production from double-parton interactions in proton–proton collisions at $$\sqrt{s} = 13 \,\text {TeV} $$
A search for WW production from double-parton scattering processes using same-charge electron-muon and dimuon events is reported, based on proton-proton collision data collected at a center-of-mass energy of 13 TeV. The analyzed data set corresponds to an integrated luminosity of 77.4 fb$^{-1}$, collected using the CMS detector at the LHC in 2016 and 2017. Multivariate classifiers are used to discriminate between the signal and the dominant background processes. A maximum likelihood fit is performed to extract the signal cross section. This leads to the first evidence for WW production via double-parton scattering, with a significance of 3.9 standard deviations. The measured inclusive cross section is 1.41 $\pm$ 0.28 (stat) $\pm$ 0.28 (syst) pb.
DOI: 10.1140/epjc/s10052-020-8168-3
2020
Cited 17 times
Search for physics beyond the standard model in events with jets and two same-sign or at least three charged leptons in proton-proton collisions at $$\sqrt{s}=13\,{\text {TeV}} $$
A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of 137fb-1 at a center-of-mass energy of 13TeV , collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as 2.1TeV for gluinos and 0.9TeV for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.
DOI: 10.1007/jhep01(2020)036
2020
Cited 16 times
Search for electroweak production of a vector-like T quark using fully hadronic final states
A search is performed for electroweak production of a vector-like top quark partner T of charge 2/3 in association with a top or bottom quark, using proton-proton collision data at $$ \sqrt{s} $$ = 13 TeV collected by the CMS experiment at the LHC in 2016. The data sample corresponds to an integrated luminosity of 35.9 fb−1. The search targets T quarks over a wide range of masses and fractional widths, decaying to a top quark and either a Higgs boson or a Z boson in fully hadronic final states. The search is performed using two experimentally distinct signatures that depend on whether or not each quark from the decays of the top quark, Higgs boson, or Z boson produces an individual resolved jet. Jet substructure, b tagging, and kinematic variables are used to identify the top quark and boson jets, and also to suppress the standard model backgrounds. The data are found to be consistent with the expected backgrounds. Upper limits at 95% confidence level are set on the cross sections for T quark-mediated production of tHQq, tZQq, and their sum, where Q is the associated top or bottom heavy quark and q is another associated quark. The limits are given for each search signature for various T quark widths up to 30% of the T quark mass, and are between 2 pb and 20 fb for T quark masses in the range 0.6–2.6 TeV. These results are significantly more sensitive than prior searches for electroweak single production of T → tH and represent the first constraints on T → tZ using hadronic decays of the Z boson with this production mode.
DOI: 10.1140/epjc/s10052-020-7834-9
2020
Cited 16 times
Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in $$\mathrm {PbPb}$$ collisions at $$\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 2.76$$ and 5.02$$\,\text {TeV}$$
Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective anisotropic flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies sNN=2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.
DOI: 10.1007/jhep03(2020)025
2020
Cited 15 times
Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at $$ \sqrt{\mathrm{s}} $$ = 13 TeV
A bstract A search for dark matter (DM) particles is performed using events with a Higgs boson candidate and large missing transverse momentum. The analysis is based on proton- proton collision data at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb − 1 . The search is performed in five Higgs boson decay channels: $$ \mathrm{h}\to \mathrm{b}\overline{\mathrm{b}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>h</mml:mi> <mml:mo>→</mml:mo> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> , γγ , τ + τ − , W + W − , and ZZ. The results from the individual channels are combined to maximize the sensitivity of the analysis. No significant excess over the expected standard model background is observed in any of the five channels or in their combination. Limits are set on DM production in the context of two simplified models. The results are also interpreted in terms of a spin-independent DM-nucleon scattering cross section and compared to those from direct-detection DM experiments. This is the first search for DM particles produced in association with a Higgs boson decaying to a pair of W or Z bosons, and the first statistical combination based on five Higgs boson decay channels.
DOI: 10.1103/physrevd.101.052010
2020
Cited 15 times
Search for supersymmetry in pp collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math> with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>137</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:msup><mml:mrow><…
Results are reported from a search for new physics beyond the standard model in proton-proton collisions in final states with a single lepton; multiple jets, including at least one jet tagged as originating from the hadronization of a bottom quark; and large missing transverse momentum. The search uses a sample of proton-proton collision data at $\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}$, corresponding to $137\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$, recorded by the CMS experiment at the LHC. The signal region is divided into categories characterized by the total number of jets, the number of bottom quark jets, the missing transverse momentum, and the sum of masses of large-radius jets. The observed event yields in the signal regions are consistent with estimates of standard model backgrounds based on event yields in the control regions. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production in which each gluino decays into a top quark-antiquark pair and a stable, unobserved neutralino, which generates missing transverse momentum in the event. Scenarios with gluino masses up to about 2150 GeV are excluded at 95% confidence level (or more) for neutralino masses up to 700 GeV. The highest excluded neutralino mass is about 1250 GeV, which holds for gluino masses around 1850 GeV.
DOI: 10.1007/jhep03(2020)103
2020
Cited 15 times
Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and eτ in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search for lepton flavour violating decays of a neutral non-standard-model Higgs boson in the $\mu\tau$ and e$\tau$ decay modes is presented. The search is based on proton-proton collisions at a center of mass energy $\sqrt{s} =$ 13 TeV collected with the CMS detector in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The $\tau$ leptons are reconstructed in the leptonic and hadronic decay modes. No signal is observed in the mass range 200-900 GeV. At 95% confidence level, the observed (expected) upper limits on the production cross section multiplied by the branching fraction vary from 51.9 (57.4) fb to 1.6 (2.1) fb for the $\mu\tau$ and from 94.1 (91.6) fb to 2.3 (2.3) fb for the e$\tau$ decay modes.
DOI: 10.1007/jhep07(2020)115
2020
Cited 15 times
Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV
A bstract The momentum-weighted sum of the electric charges of particles inside a jet, known as jet charge, is sensitive to the electric charge of the particle initiating the parton shower. This paper presents jet charge distributions in $$ \sqrt{s_{\mathrm{NN}}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msqrt> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>NN</mml:mi> </mml:msub> </mml:msqrt> </mml:math> = 5 . 02 TeV lead-lead (PbPb) and proton-proton (pp) collisions recorded with the CMS detector at the LHC. These data correspond to integrated luminosities of 404 μ b − 1 and 27.4 pb − 1 for PbPb and pp collisions, respectively. Leveraging the sensitivity of the jet charge to fundamental differences in the electric charges of quarks and gluons, the jet charge distributions from simulated events are used as templates to extract the quark- and gluon-like jet fractions from data. The modification of these jet fractions is examined by comparing pp and PbPb data as a function of the overlap of the colliding Pb nuclei (centrality). This measurement tests the color charge dependence of jet energy loss due to interactions with the quark-gluon plasma. No significant modification between different centrality classes and with respect to pp results is observed in the extracted quark- and gluon-like jet fractions.
DOI: 10.1007/jhep05(2022)093
2022
Cited 8 times
Search for single production of a vector-like T quark decaying to a top quark and a Z boson in the final state with jets and missing transverse momentum at $$ \sqrt{s} $$ = 13 TeV
A bstract A search is presented for single production of a vector-like T quark with charge 2 / 3 e , in the decay channel featuring a top quark and a Z boson, with the top quark decaying hadronically and the Z boson decaying to neutrinos. The search uses data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb − 1 recorded at the CERN LHC in 2016–2018. The search is sensitive to a T quark mass between 0.6 and 1.8 TeV with decay widths ranging from negligibly small up to 30% of the T quark mass. Reconstruction strategies for the top quark are based on the degree of Lorentz boosting of its final state. At 95% confidence level, the upper limit on the product of the cross section and branching fraction for a T quark of small decay width varies between 15 and 602 fb, depending on its mass. For a T quark with decay widths between 10 and 30% of its mass, this upper limit ranges between 16 and 836 fb. For most of the studied range, the results provide the best limits to date. This is the first search for single T quark production based on the full Run 2 data set of the LHC.
DOI: 10.1103/physrevlett.123.231803
2019
Cited 16 times
Search for Low-Mass Quark-Antiquark Resonances Produced in Association with a Photon at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for narrow low-mass resonances decaying to quark-antiquark pairs is presented. The search is based on proton-proton collision events collected at 13 TeV by the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 35.9 fb^{-1}, recorded in 2016. The search considers the case where the resonance has high transverse momentum due to initial-state radiation of a hard photon. To study this process, the decay products of the resonance are reconstructed as a single large-radius jet with two-pronged substructure. The signal would be identified as a localized excess in the jet invariant mass spectrum. No evidence for such a resonance is observed in the mass range 10 to 125 GeV. Upper limits at the 95% confidence level are set on the coupling strength of resonances decaying to quark pairs. The results obtained with this photon trigger strategy provide the first direct constraints on quark-antiquark resonance masses below 50 GeV obtained at a hadron collider.
DOI: 10.1007/jhep12(2019)062
2019
Cited 16 times
Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV
A search is presented for three additional operators that would lead to anomalous WW$\gamma$ or WWZ couplings with respect to those in the standard model. They are constrained by studying events with two vector bosons; a W boson decaying to e$\nu$ or $\mu\nu$, and a W or Z boson decaying hadronically, reconstructed as a single, massive, large-radius jet. The search uses a data set of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Using the reconstructed diboson invariant mass, 95% confidence intervals are obtained for the anomalous coupling parameters of $-$1.58 $<$ $c_\mathrm{WWW}/\Lambda^2$ $<$ 1.59 TeV$^{-2}$, $-$2.00 $<$ $c_\mathrm{W}/\Lambda^2$ $<$ 2.65 TeV$^{-2}$, and $-$8.78 $<$ $c_\mathrm{B}/\Lambda^2$ $<$ 8.54 TeV$^{-2}$, in agreement with standard model expectations of zero for each parameter. These are the strictest bounds on these parameters to date.
DOI: 10.1016/j.physletb.2019.134811
2019
Cited 16 times
Search for Higgs and Z boson decays to J/ψ or Y pairs in the four-muon final state in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math>
A search for decays of the Higgs and Z boson to pairs of J/ψ or Y(nS) (n = 1, 2, 3) mesons, with their subsequent decay to μ+μ− pairs, is presented. The analysis uses data from proton-proton collisions at s=13TeV, collected with the CMS detector at the LHC in 2017 and corresponding to an integrated luminosity of 37.5fb−1. While an observation of such a decay with this sample would indicate the presence of physics beyond the standard model, no significant excess is observed. Upper limits at 95% confidence level are placed on the branching fractions of these decays. In the J/ψ pair channel, the limits are 1.8×10−3 and 2.2×10−6 for the Higgs and Z boson, respectively, while in the combined Y(nS) pair channel, the limits are 1.4×10−3 and 1.5×10−6, respectively, when the mesons from the Higgs and Z boson decay are assumed to be unpolarized. When fully longitudinal and transverse polarizations are considered the limits reduce by about 22–29% and increase by about 10–13%, respectively.
DOI: 10.1103/physrevd.100.012004
2019
Cited 15 times
Search for the production of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>W</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:msup><mml:mi>W</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:msup><mml:mi>W</mml:mi><mml:mo>∓</mml:mo></mml:msup></mml:math> events at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><…
A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb−1. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W±W±W∓ production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34+0.62−0.34. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axionlike particles.Received 10 May 2019DOI:https://doi.org/10.1103/PhysRevD.100.012004Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2019 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasExtensions of gauge sectorW & Z bosonsTechniquesHadron collidersParticles & Fields
DOI: 10.1140/epjc/s10052-020-7858-1
2020
Cited 14 times
Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at $$\sqrt{s}=13$$ $$\,\text {Te}\text {V}$$
Abstract A measurement is presented of differential cross sections for t -channel single top quark and antiquark production in proton–proton collisions at a centre-of-mass energy of 13 $$\,\text {Te}\text {V}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mspace /><mml:mrow><mml:mtext>Te</mml:mtext><mml:mspace /></mml:mrow></mml:mrow></mml:math> by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 $$\,\text {fb}^{-1}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mspace /><mml:msup><mml:mtext>fb</mml:mtext><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> , events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ( $$p_{\mathrm{T}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>p</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:math> ), rapidity, and polarisation angle, the charged lepton $$p_{\mathrm{T}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>p</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:math> and rapidity, and the $$p_{\mathrm{T}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>p</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:math> of the $$\text {W}{}{}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>W</mml:mtext><mml:mrow /><mml:mrow /></mml:mrow></mml:math> boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and $$\text {W}{}{}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>W</mml:mtext><mml:mrow /><mml:mrow /></mml:mrow></mml:math> boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be $$0.440 \pm 0.070$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.440</mml:mn><mml:mo>±</mml:mo><mml:mn>0.070</mml:mn></mml:mrow></mml:math> , in agreement with the standard model prediction.
DOI: 10.1088/1748-0221/16/02/p02010
2021
Cited 12 times
The very forward CASTOR calorimeter of the CMS experiment
The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS experiment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of $-$6.6 $\lt$ $\eta$ $\lt$ $-$5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC.
DOI: 10.1016/j.physletb.2021.136535
2021
Cited 12 times
Search for W′ bosons decaying to a top and a bottom quark at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>13</mml:mn><mml:mspace width="0.2em" /><mml:mtext>TeV</mml:mtext></mml:math> in the hadronic final state
A search is performed for W' bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137 fb$^{-1}$. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Both left- and right-handed W' bosons with masses below 3.4 TeV are excluded at 95% confidence level, and the most stringent limits to date on W' bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.
DOI: 10.48550/arxiv.2102.13048
2021
Cited 12 times
Evidence for X(3872) in PbPb collisions and studies of its prompt production at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV
The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (PbPb) collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV per nucleon pair, using the decay chain X(3872) $\to$ J$/ψ\, π^+π^- \to$ $μ^+μ^-π^+π^-$. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb$^{-1}$. The measurement is performed in the rapidity and transverse momentum ranges $|y|$ $\lt$ 1.6 and 15 $\lt$ $p_\mathrm{T}$ $\lt$ 50 GeV$/c$. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to $ψ$(2S) yield ratio is found to be $ρ^\mathrm{PbPb} = $ 1.08 $\pm$ 0.49 (stat) $\pm$ 0.52 (syst), to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state.
DOI: 10.1103/physrevlett.126.252002
2021
Cited 11 times
Measurement of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>W</mml:mi><mml:mi>γ</mml:mi></mml:mrow></mml:math> Production Cross Section in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math> and Constraints on Effective Field Theory …
A fiducial cross section for W$\gamma$ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb$^{-1}$ of data collected using the CMS detector at the LHC. The W $\to$ e$\nu$ and $\mu\nu$ decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.
DOI: 10.1103/physrevlett.127.261804
2021
Cited 11 times
Search for Long-Lived Particles Decaying in the CMS End Cap Muon Detectors in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137 fb^{-1} of proton-proton collisions at sqrt[s]=13 TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the end cap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and τ^{+}τ^{-} are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.
DOI: 10.1007/jhep04(2022)062
2022
Cited 7 times
Search for long-lived particles decaying into muon pairs in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV collected with a dedicated high-rate data stream
A search for long-lived particles decaying into muon pairs is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2017 and 2018, corresponding to an integrated luminosity of 101 fb$^{-1}$. The data sets used in this search were collected with a dedicated dimuon trigger stream with low transverse momentum thresholds, recorded at high rate by retaining a reduced amount of information, in order to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex. No significant excess of events beyond the standard model expectation is found. Upper limits on branching fractions at 95% confidence level are set on a wide range of mass and lifetime hypotheses in beyond the standard model frameworks with the Higgs boson decaying into a pair of long-lived dark photons, or with a long-lived scalar resonance arising from a decay of a b hadron. The limits are the most stringent to date for substantial regions of the parameter space. These results can be also used to constrain models of displaced dimuons that are not explicitly considered in this paper.
DOI: 10.1016/j.physletb.2022.137392
2023
Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the four b quarks final state with boosted topology
We search for new massive scalar particles X and Y through the resonant process X $\to$ YH $\to$ $\mathrm{b\bar{b}b\bar{b}}$, where H is the standard model Higgs boson. Data from CERN LHC proton-proton collisions are used, collected at a centre-of-mass energy of 13 TeV in 2016-2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed in mass ranges of 0.9-4 TeV for X and 60-600 GeV for Y, where both Y and H are reconstructed as Lorentz-boosted single large-area jets. The results are interpreted in the context of the next-to-minimal supersymmetric standard model and also in an extension of the standard model with two additional singlet scalar fields. The 95% confidence level upper limits for the production cross section vary between 0.1 and 150 fb depending on the X and Y masses, and represent a significant improvement over results from previous searches.
DOI: 10.1140/epjc/s10052-023-11631-7
2023
Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell–Yan production in proton–proton collisions at $$\sqrt{s} = 13\,\text {Te\hspace{-.08em}V} $$
The double differential cross sections of the Drell-Yan lepton pair (ℓ+ℓ-, dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ, transverse momentum pT(ℓℓ), and φη∗. The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ), is used to probe the low-pT(ℓℓ) region in a complementary way. Dilepton masses up to 1TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb-1 of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
DOI: 10.1103/physrevlett.131.051901
2023
Azimuthal Correlations within Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions
The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at sqrt[s_{NN}]=5.02 TeV, corresponding to an integrated luminosity of 0.38 nb^{-1}, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet transverse momentum vectors is found to be positive, and rising, as the dijet transverse momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.
DOI: 10.1103/physrevlett.124.162002
2020
Cited 12 times
Constraints on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>χ</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math> versus <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>χ</mml:mi><mml:mrow><mml:mi>c</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> Polarizations in Proton-Proton Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display…
The polarizations of promptly produced χc1 and χc2 mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χc states are reconstructed via their radiative decays χc→J/ψγ, with the photons being measured through conversions to e+e−, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χc2 to χc1 yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ→μ+μ− decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.Received 16 December 2019Revised 25 January 2020Accepted 26 March 2020DOI:https://doi.org/10.1103/PhysRevLett.124.162002Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.© 2020 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Hadron collidersTechniquesExperimental TechniquesParticle acceleratorsHadron collidersPhysical SystemsCharm quarkPropertiesPolarizationTechniquesHadron collidersParticles & Fields
DOI: 10.1088/1748-0221/15/10/p10002
2020
Cited 12 times
Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton-proton interactions
A template fitting technique for reconstructing the amplitude of signals produced by the lead tungstate crystals of the CMS electromagnetic calorimeter is described. This novel approach is designed to suppress the contribution to the signal of the increased number of out-of-time interactions per beam crossing following the reduction of the accelerator bunch spacing from 50 to 25 ns at the start of Run 2 of the LHC. Execution of the algorithm is sufficiently fast for it to be employed in the CMS high-level trigger. It is also used in the offline event reconstruction. Results obtained from simulations and from Run 2 collision data (2015–2018) demonstrate a substantial improvement in the energy resolution of the calorimeter over a range of energies extending from a few GeV to several tens of GeV.
DOI: 10.1103/physrevd.102.032003
2020
Cited 12 times
Search for resonant pair production of Higgs bosons in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>b</mml:mi><mml:mi>b</mml:mi><mml:mi>Z</mml:mi><mml:mi>Z</mml:mi></mml:math> channel in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
A search for the production of a narrow-width resonance decaying into a pair of Higgs bosons decaying into the bbZZ channel is presented. The analysis is based on data collected with the CMS detector during 2016, in proton-proton collisions at the LHC, corresponding to an integrated luminosity of 35.9 fb−1. The final states considered are the ones where one of the Z bosons decays into a pair of muons or electrons, and the other Z boson decays to either a pair of quarks or a pair of neutrinos. Upper limits at 95% confidence level are placed on the production of narrow-width spin-0 or spin-2 particles decaying to a pair of Higgs bosons, in models with and without an extended Higgs sector. For a resonance mass range between 260 and 1000 GeV, limits on the production cross section times branching fraction of a spin-0 and spin-2 resonance range from 0.1 to 5.0 pb and 0.1 to 3.6 pb, respectively. These results set limits in parameter space in bulk Randall-Sundrum radion, Kaluza-Klein excitation of the graviton, and next-to-minimal two-Higgs doublet models (N2HDMs). For specific choices of parameters the N2HDM can be excluded in a mass range between 360 and 620 GeV for a resonance decaying to two Higgs bosons. This is the first search for Higgs boson resonant pair production in the bbZZ channel.Received 11 June 2020Accepted 15 July 2020DOI:https://doi.org/10.1103/PhysRevD.102.032003Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.© 2020 CERN, for the CMS CollaborationPhysics Subject Headings (PhySH)Research AreasParticle decaysPhysical SystemsBottom quarkHiggs bosonsTechniquesHadron collidersParticles & Fields
DOI: 10.1088/1748-0221/16/07/p07001
2021
Cited 10 times
Performance of the CMS muon trigger system in proton-proton collisions at √(s) = 13
The muon trigger system of the CMS experiment uses a combination of hardware and software to identify events containing a muon. During Run 2 (covering 2015-2018) the LHC achieved instantaneous luminosities as high as 2 $\times$ 10$^{34}$cm$^{-2}$s$^{-1}$ while delivering proton-proton collisions at $\sqrt{s} =$ 13 TeV. The challenge for the trigger system of the CMS experiment is to reduce the registered event rate from about 40 MHz to about 1 kHz. Significant improvements important for the success of the CMS physics program have been made to the muon trigger system via improved muon reconstruction and identification algorithms since the end of Run 1 and throughout the Run 2 data-taking period. The new algorithms maintain the acceptance of the muon triggers at the same or even lower rate throughout the data-taking period despite the increasing number of additional proton-proton interactions in each LHC bunch crossing. In this paper, the algorithms used in 2015 and 2016 and their improvements throughout 2017 and 2018 are described. Measurements of the CMS muon trigger performance for this data-taking period are presented, including efficiencies, transverse momentum resolution, trigger rates, and the purity of the selected muon sample. This paper focuses on the single- and double-muon triggers with the lowest sustainable transverse momentum thresholds used by CMS. The efficiency is measured in a transverse momentum range from 8 to several hundred GeV.
DOI: 10.1103/physrevd.104.032006
2021
Cited 10 times
Search for top squarks in final states with two top quarks and several light-flavor jets in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math>
Many new physics models, including versions of supersymmetry characterized by $R$-parity violation (RPV), compressed mass spectra, long decay chains, or additional hidden sectors, predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for new physics in events with two top quarks and additional jets are reported. The search is performed using events with at least seven jets and exactly one electron or muon. No requirement on missing transverse momentum is imposed. The study is based on a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV corresponding to 137 fb$^{-1}$ of integrated luminosity collected with the CMS detector at the LHC in 2016-2018. The data are used to determine best fit values and upper limits on the cross section for pair production of top squarks in scenarios of RPV and stealth supersymmetry. Top squark masses up to 670 (870) GeV are excluded at 95% confidence level for the RPV (stealth) scenario, and the maximum observed local signal significance is 2.8 standard deviations for the RPV scenario with top squark mass of 400 GeV.
DOI: 10.1007/jhep04(2022)087
2022
Cited 6 times
Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $$ \sqrt{s} $$ = 13 TeV
A bstract A search has been performed for heavy resonances decaying to ZZ or ZW and for axion-like particles (ALPs) mediating nonresonant ZZ or ZH production, in final states with two charged leptons ( ℓ = e , μ) produced by the decay of a Z boson, and two quarks produced by the decay of a Z, W, or Higgs boson H. The analysis is sensitive to resonances with masses in the range 450 to 2000 GeV. Two categories are defined corresponding to the merged or resolved reconstruction of the hadronically decaying boson. The search is based on data collected during 2016–2018 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb − 1 . No significant excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-2 and spin-1 resonances are derived as functions of the resonance mass, and exclusion limits on the production of bulk graviton particles and W′ bosons are calculated in the framework of the warped extra dimensions and heavy vector triplet models, respectively. In addition, upper limits on the ALP-mediated diboson production cross section and ALP couplings to standard model particles are obtained in the framework of linear and chiral effective field theories. These are the first limits on nonresonant ALP-mediated ZZ and ZH production obtained by the LHC experiments.
DOI: 10.1103/physrevd.105.052003
2022
Cited 6 times
Measurement of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mo>±</mml:mo></mml:msup><mml:mi>γ</mml:mi></mml:math> differential cross sections in proton-proton collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math> and …
Differential cross section measurements of W$^\pm\gamma$ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV are presented. The data set used in this study was collected with the CMS detector at the CERN LHC in 2016-2018 with an integrated luminosity of 138 fb$^{-1}$. Candidate events containing an electron or muon, a photon, and missing transverse momentum are selected. The measurements are compared with standard model predictions computed at next-to-leading and next-to-next-to-leading orders in perturbative quantum chromodynamics. Constraints on the presence of TeV-scale new physics affecting the WW$\gamma$ vertex are determined within an effective field theory framework, focusing on the $\mathcal{O}_\mathrm{3W}$ operator. A simultaneous measurement of the photon transverse momentum and the azimuthal angle of the charged lepton in a special reference frame is performed. This two-dimensional approach provides up to a factor of ten more sensitivity to the interference between the standard model and the $\mathcal{O}_\mathrm{3W}$ contribution than using the transverse momentum alone.
DOI: 10.1140/epjc/s10052-022-10897-7
2022
Cited 6 times
Measurements of the associated production of a W boson and a charm quark in proton–proton collisions at $$\sqrt{s}=8\,\text {TeV} $$
Measurements of the associated production of a W boson and a charm ( c ) quark in proton-proton collisions at a centre-of-mass energy of 8 TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 fb-1 collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction σ(pp→W+c+X)B(W→ℓν) , where ℓ=e or μ , and the cross section ratio σ(pp→W++c¯+X)/σ(pp→W-+c+X) are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.
DOI: 10.1088/1748-0221/17/03/p03014
2022
Cited 5 times
A new calibration method for charm jet identification validated with proton-proton collision events at √s = 13 TeV
Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate different miscalibration conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.
DOI: 10.1103/physrevlett.129.022001
2022
Cited 5 times
Probing Charm Quark Dynamics via Multiparticle Correlations in Pb-Pb Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>5.02</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>
Multiparticle azimuthal correlations of prompt D^{0} mesons are measured in Pb-Pb collisions at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=5.02 TeV. For the first time, a four-particle cumulant method is used to extract the second Fourier coefficient of the azimuthal distribution (v_{2}) of D^{0} mesons as a function of event centrality and the D^{0} transverse momentum. The ratios of the four-particle v_{2} values to previously measured two-particle cumulant results provide direct experimental access to event-by-event fluctuations of charm quark azimuthal anisotropies. These ratios are also found to be comparable to those of inclusive charged particles in the event. However, hints of deviations are seen in the most central and peripheral collisions. To investigate the origin of flow fluctuations in the charm sector, these measurements are compared to a model implementing fluctuations of charm quark energy loss via collisional or radiative processes in the quark-gluon plasma. These models cannot quantitatively describe the data over the full transverse momentum and centrality ranges, although the calculations with collisional energy loss provide a better description of the data.
DOI: 10.1007/jhep06(2019)143
2019
Cited 11 times
Search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at 13 TeV
A bstract Results are reported of a search for supersymmetry in final states with photons and missing transverse momentum in proton-proton collisions at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb −1 collected at a center-of-mass energy of 13 TeV using the CMS detector. The results are interpreted in the context of models of gauge-mediated supersymmetry breaking. Production cross section limits are set on gluino and squark pair production in this framework. Gluino masses below 1.86 TeV and squark masses below 1.59 TeV are excluded at 95% confidence level.
DOI: 10.1103/physrevd.103.052008
2021
Cited 8 times
Measurement of differential <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:math> production cross sections using top quarks at large transverse momenta in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="…
A measurement is reported of differential top quark pair ($\mathrm{t\bar{t}}$) production cross sections, where top quarks are produced at large transverse momenta. The data collected with the CMS detector at the LHC are from pp collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The measurement uses events where at least one top quark decays as t $\to$ Wb $\to$ qq'b and is reconstructed as a large-radius jet with transverse momentum in excess of 400 GeV. The second top quark is required to decay either in a similar way, or leptonically, as inferred from a reconstructed electron or muon, a bottom quark jet, and a missing transverse momentum due to the undetected neutrino. The cross section is extracted as a function of kinematic variables of individual top quarks or of the $\mathrm{t\bar{t}}$ system. The results are presented at the particle level, within a region of phase space close to that of the experimental acceptance, and at the parton level, and are compared to various theoretical models. In both decay channels the observed absolute cross sections are significantly lower than the predictions from theory, while the normalized differential measurements are well described.
DOI: 10.1007/jhep04(2021)109
2021
Cited 8 times
Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at $$ \sqrt{s} $$ = 13 TeV
Measurements are presented of differential cross sections for the production of Z bosons in association with at least one jet initiated by a charm quark in pp collisions at $\sqrt{s} =$ 13 TeV. The data recorded by the CMS experiment at the LHC correspond to an integrated luminosity of 35.9 fb$^{-1}$. The final states that contain a pair of electrons or muons that are the decay products of a Z boson, and a jet consistent with being initiated by a charm quark produced in the hard interaction. Differential cross sections as a function of the $p_\mathrm{T}$ of the Z boson and $p_\mathrm{T}$ of the charm jet are compared with predictions from Monte Carlo event generators. The inclusive production cross section 405.4 $\pm$ 5.6 (stat) $\pm$ 24.3 (exp) $\pm$ 3.7 (theo) pb, is measured in a fiducial region requiring both leptons to have $\vert\eta\vert$ $\lt$ 2.4 and $p_\mathrm{T}$ $\gt$ 10 GeV, at least one lepton with $p_\mathrm{T}$ $\gt$ 26 GeV, and a mass of the pair in the range 71-111 GeV, while the charm jet is required to have $p_\mathrm{T}$ $\gt$ 30 GeV and $\vert\eta\vert$ $\lt$ 2.4. These are the first measurements of these cross sections in proton-proton collisions at 13 TeV.