DOI: 10.1103/physrev.136.b864
OpenAccess: Bronze
This work has “Bronze” OA status. This means it is free to read on the publisher landing page, but without any identifiable license.
Share this:
Get up to 30% off our standard price for selected sequencing services covering sample extraction, library preparation, sequencing, and bioinformatic analysis.
Find out more

Inhomogeneous Electron Gas

P. C. Hohenberg,Walter Kohn

Atomic physics
Nuclear physics
This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathrm{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathrm{r})]$, independent of $v(\mathrm{r})$, such that the expression $E\ensuremath{\equiv}\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathrm{r})$. The functional $F[n(\mathrm{r})]$ is then discussed for two situations: (1) $n(\mathrm{r})={n}_{0}+\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}(\mathrm{r})$, $\frac{\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}}{{n}_{0}}\ensuremath{\ll}1$, and (2) $n(\mathrm{r})=\ensuremath{\phi}(\frac{\mathrm{r}}{{r}_{0}})$ with $\ensuremath{\phi}$ arbitrary and ${r}_{0}\ensuremath{\rightarrow}\ensuremath{\infty}$. In both cases $F$ can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.

Referenced Papers:
Related Papers: