DOI: 10.1063/5.0101489
OpenAccess: Bronze
This work has “Bronze” OA status. This means it is free to read on the publisher landing page, but without any identifiable license.
Share this:
Remember all your deadlines for grant applications and conference abstracts!
Add your email to join our free beta test:
Thank you!

Phase-field model of grain boundary diffusion in nanocrystalline solids: Anisotropic fluctuations, anomalous diffusion, and precipitation

Pavel E. L'vov,Renat T. Sibatov

Nucleation
Nanotechnology
Effective diffusion coefficient
PDFFull Text PDF Links found:
The anisotropic phase-filed model of grain boundary diffusion and precipitation of solute in nanocrystalline solids has been developed. In this model, the Cahn–Hilliard equation is generalized for the anisotropic phase-field diffusion of solute and anisotropic compositional fluctuations. It is found that dynamics of solute concentration profile demonstrates the anomalous diffusion behavior with scaling parameters depending on the mobility ratio and microstructure of a solid solution. It is noteworthy that the increase in source concentration can slow down the concentration front propagation due to uphill diffusion or formation of a new phase. Parameters of grain boundary diffusion control the precipitation dynamics. In particular, a decrease in transverse diffusion coefficient is responsible for longer incubation time, and lower rates of nucleation and nuclei growth in comparison with the case of isotropic solute transport near grain boundaries. Transport properties of boundary and bulk are responsible for the formation of the bimodal size distribution function of second phase particles and specific kinetics of average radius and number density.


Referenced Papers:
DOI: 10.1007/bf00191049
·
1996
Cited 5 times
Grain boundary interdiffusion in the case of concentration-dependent grain boundary diffusion coefficient
DOI: 10.1134/s1063783415030063
·
2015
Cited 12 times
Splitting of the phase diagram of a stratified solid solution in micro- and nanosized systems
DOI: 10.1016/j.cma.2014.12.007
·
2015
Cited 87 times
An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals
DOI: 10.1016/0167-2789(95)00298-7
·
1996
Cited 643 times
A phase field concept for multiphase systems
DOI: 10.1016/0001-6160(70)90144-6
·
1970
Cited 753 times
Brownian motion in spinodal decomposition
DOI: 10.1080/14786441208561131
·
1954
Cited 599 times
CXXXVIII. Concentration contours in grain boundary diffusion
DOI: 10.1063/1.1735063
·
1959
Cited 10 times
Grain‐Boundary Diffusion of Zinc in Copper Measured by the Electron‐Probe Microanalyzer
DOI: 10.1016/s1359-6454(97)00022-0
·
1997
Cited 99 times
Diffusion-controlled grain growth in two-phase solids
DOI: 10.1103/revmodphys.49.435
·
1977
Cited 4,726 times
Theory of dynamic critical phenomena
DOI: 10.1016/s1359-6454(96)00200-5
·
1997
Cited 354 times
Computer simulation of grain growth using a continuum field model
DOI: 10.1016/s0167-2789(99)00129-3
·
1999
Cited 375 times
A generalized field method for multiphase transformations using interface fields
DOI: 10.1063/1.1699825
·
1951
Cited 1,101 times
Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion
DOI: 10.1063/1.1728380
·
1961
Cited 58 times
Grain‐Boundary Diffusion
DOI: 10.1088/0965-0393/19/3/035002
·
2011
Cited 47 times
A phase-field model of stress effect on grain boundary migration
DOI: 10.1134/s106378341607026x
·
2016
Cited 6 times
Simulation of the early stage of binary alloy decomposition, based on the free energy density functional method
DOI: 10.1002/9783527631520
·
2010
Cited 253 times
Phase-Field Methods in Materials Science and Engineering
DOI: 10.1016/j.pmatsci.2016.11.001
·
2017
Cited 109 times
Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results
DOI: 10.1007/978-3-319-41196-5
·
2017
Cited 31 times
Programming Phase-Field Modeling
DOI: 10.1016/j.physleta.2017.04.012
·
2017
Cited 7 times
Grain boundary diffusion in terms of the tempered fractional calculus
DOI: 10.1088/1361-651x/aa7fe3
·
2017
Cited 12 times
Simulation of the first order phase transitions in binary alloys with variable mobility
DOI: 10.1134/s1063783417120253
·
2017
Cited 6 times
Influence of grain boundaries on the distribution of components in binary alloys
DOI: 10.1088/1361-651x/aaaed8
·
2018
Cited 8 times
Stochastic simulation of nucleation in binary alloys
DOI: 10.1134/s1063783418040200
·
2018
Cited 3 times
Precipitation Kinetics in Binary Alloys near Grain Boundaries
DOI: 10.1088/1361-651x/aacb94
·
2018
Cited 3 times
Phase-field modeling of pores and precipitates in polycrystalline systems
DOI: 10.1088/1361-651x/aaf526
·
2019
Cited 4 times
Generalized non-classical nucleation model in binary alloys
DOI: 10.1155/2019/8017363
·
2019
Cited 6 times
Anomalous Grain Boundary Diffusion: Fractional Calculus Approach
DOI: 10.1134/s106378341902015x
·
2019
Effect of Fluctuations on the Formation of Secondary Phase Precipitates at Grain Boundaries
DOI: 10.1016/j.actamat.2019.05.059
·
2019
Cited 12 times
Phase-field study of grain growth in porous polycrystals
DOI: 10.1103/physrevb.92.020103
·
2015
Cited 124 times
Segregation-induced phase transformations in grain boundaries
DOI: 10.1016/j.actamat.2020.10.029
·
2020
Cited 27 times
Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys
DOI: 10.1021/acs.cgd.0c01224
·
2021
Cited 7 times
Two-Step Mechanism of Macromolecular Nucleation and Crystallization: Field Theory and Simulations
DOI: 10.1016/j.actamat.2021.116668
·
2021
Cited 7 times
Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems
DOI: 10.1016/j.commatsci.2021.110295
·
2021
Cited 5 times
Phase-field modeling of grain growth in presence of grain boundary diffusion and segregation in ceramic matrix mini-composites
DOI: 10.1016/j.actamat.2021.117056
·
2021
An expansion of the Fisher model for concentration dependent grain boundary diffusion
DOI: 10.1007/978-1-4612-1536-3
·
1999
Cited 442 times
Noise in Spatially Extended Systems
DOI: 10.1007/978-1-4899-7430-3
·
2014
Cited 95 times
Atom-Probe Tomography
DOI: 10.1142/8185
·
2011
Cited 29 times
Fractional Kinetics in Solids
DOI: 10.1007/978-1-4614-1487-2
·
2012
Cited 21 times
Field Theoretic Method in Phase Transformations
DOI: 10.1002/9783527627769
·
2009
Cited 134 times
Kinetics of First‐Order Phase Transitions
DOI: 10.1023/a:1021599310093
·
2003
Cited 167 times
Related Papers: