DOI: 10.1063/5.0096568
OpenAccess: Bronze
This work has “Bronze” OA status. This means it is free to read on the publisher landing page, but without any identifiable license.
Share this:
Remember all your deadlines for grant applications and conference abstracts!
Add your email to join our free beta test:
Thank you!

An exact tunneling model and its application to transmission and reflection delay times

Kevin L. Jensen,Jeanne Riga,Joel L. Lebowitz,Rebecca Seviour,Don Shiffler

Reflection (computer programming)
Distribution function
Wigner distribution function
PDFFull Text PDF Links found:
Electron emission into a nanogap is not instantaneous, which presents a difficulty in simulating ultra-fast behavior using particle models. A method of approximating the transmission and reflection delay (TARD) times of a wave packet interacting with barriers described by a delta function, a metal–insulator–metal (MIM, rectangular) barrier, and a Fowler Nordheim (FN, triangular) barrier is given and has application to simulation. It is based on the superposition of a finite number of exact basis states obtained from Schrödinger’s equation, analogous to how quantum carpets are simulated. As a result, it can exactly and uniquely follow exponentially small tunneling currents. A Bohm-like trajectory is obtained from the time evolution of the density: it shows delay in both the transmitted and reflected packets that can be simply evaluated. The relations to prior studies of the analytic [Formula: see text]-function barrier and the Wigner distribution function (WDF) methods are described. A comparison of the TARD times is contrasted to alternate times in the Büttiker–Landauer (BL) and McColl–Hartman (MH) times; the MH approach is further reformulated explicitly in terms of Gamow factors to consider how the McColl–Hartman effect is to be related, particularly in the case of the FN barrier of field emission.


Referenced Papers:
DOI: 10.1016/j.physe.2015.09.041
·
2016
Cited 50 times
Wigner time delay and related concepts: Application to transport in coherent conductors
DOI: 10.1063/1.1510281
·
2002
Cited 51 times
The Early History of Quantum Tunneling
DOI: 10.1063/1.338213
·
1987
Cited 120 times
Theory of resonant tunneling in a variably spaced multiquantum well structure: An Airy function approach
DOI: 10.1063/1.3462934
·
2010
Cited 24 times
Self focusing of field emitted electrons at an ellipsoidal tip
DOI: 10.1119/1.15695
·
1988
Cited 51 times
Time‐dependent tunneling through thin barriers: A simple analytical solution
DOI: 10.1103/revmodphys.46.237
·
1974
Cited 92 times
Long journey into tunneling
DOI: 10.1103/physrevb.61.5644
·
2000
Cited 27 times
Emitter quantization and double hysteresis in resonant-tunneling structures: A nonlinear model of charge oscillation and current bistability
DOI: 10.1016/0370-1573(84)90160-1
·
1984
Cited 2,366 times
Distribution functions in physics: Fundamentals
DOI: 10.1103/physrevb.42.9429
·
1990
Cited 151 times
Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices
DOI: 10.1103/revmodphys.66.217
·
1994
Cited 632 times
Barrier interaction time in tunneling
DOI: 10.1103/physrevb.27.6178
·
1983
Cited 572 times
Larmor precession and the traversal time for tunneling
DOI: 10.1103/physrevlett.49.1739
·
1982
Cited 926 times
Traversal Time for Tunneling
DOI: 10.1103/physrevb.19.3353
·
1979
Cited 55 times
Total energy distributions of field-emitted electrons at high current density
DOI: 10.1117/12.137589
·
1992
Cited 3 times
<title>Quantum-mechanical tunneling time and its relation to the Tsu-Esaki formula</title>
DOI: 10.1007/bf00726873
·
1982
Cited 149 times
A quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells
DOI: 10.1088/1367-2630/15/1/013052
·
2013
Cited 20 times
Quantum carpets: a tool to observe decoherence
DOI: 10.1103/physrev.40.621
·
1932
Cited 275 times
Note on the Transmission and Reflection of Wave Packets by Potential Barriers
DOI: 10.1103/physrevlett.66.1078
·
1991
Cited 127 times
Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures
DOI: 10.1103/revmodphys.61.917
·
1989
Cited 903 times
Tunneling times: a critical review
DOI: 10.1063/1.337788
·
1986
Cited 189 times
Exact solution of the Schrodinger equation across an arbitrary one‐dimensional piecewise‐linear potential barrier
DOI: 10.1098/rspa.2007.0030
·
2007
Cited 217 times
Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission
DOI: 10.1119/1.1973991
·
1967
Cited 349 times
Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena
DOI: 10.1016/j.physrep.2014.02.005
·
2014
Cited 61 times
The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics
DOI: 10.1063/1.352779
·
1993
Cited 60 times
Numerical simulation of field emission and tunneling: A comparison of the Wigner function and transmission coefficient approaches
DOI: 10.1063/1.4717751
·
2012
Cited 120 times
Vacuum nanoelectronics: Back to the future?—Gate insulated nanoscale vacuum channel transistor
DOI: 10.1016/j.physrep.2006.09.002
·
2006
Cited 271 times
Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox
DOI: 10.1063/1.350278
·
1991
Cited 81 times
Self‐consistent solution of the Poisson and Schrödinger equations in accumulated semiconductor‐insulator interfaces
DOI: 10.1103/revmodphys.62.745
·
1990
Cited 637 times
Boundary conditions for open quantum systems driven far from equilibrium
DOI: 10.1103/physreva.79.023826
·
2009
Cited 16 times
Tunneling delay time in frustrated total internal reflection
DOI: 10.1063/1.2996005
·
2008
Cited 45 times
Exact analysis of surface field reduction due to field-emitted vacuum space charge, in parallel-plane geometry, using simple dimensionless equations
DOI: 10.1063/1.343120
·
1989
Cited 39 times
Numerical simulation of transient response and resonant‐tunneling characteristics of double‐barrier semiconductor structures as a function of experimental parameters
DOI: 10.1103/physrevlett.91.260401
·
2003
Cited 179 times
Delay Time and the Hartman Effect in Quantum Tunneling
DOI: 10.1088/0268-1242/9/5s/135
·
1994
Cited 5 times
Resonance effects in quantum ballistic transport
DOI: 10.1088/0957-4484/20/40/405202
·
2009
Cited 22 times
Space charge effects in field emission nanodevices.
DOI: 10.1063/1.1702424
·
1962
Cited 620 times
Tunneling of a Wave Packet
DOI: 10.1006/spmi.1997.0511
·
1998
Cited 3 times
Landauer counting argument, quantum distribution-function transport equations, and nonequilibrium quantum statistical physics
DOI: 10.1098/rspa.1928.0091
·
1928
Cited 4,228 times
Electron emission in intense electric fields
DOI: 10.1063/1.4940390
·
2016
Cited 30 times
Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers
DOI: 10.1021/acs.nanolett.6b04363
·
2017
Cited 69 times
Nanoscale Vacuum Channel Transistor
DOI: 10.1007/bf03156644
·
1952
Cited 10 times
The passage of a wave packet through a potential barrier
DOI: 10.1063/1.4921186
·
2015
Cited 39 times
Discrete space charge affected field emission: Flat and hemisphere emitters
DOI: 10.1063/1.4958944
·
2016
Cited 31 times
Fractional-dimensional Child-Langmuir law for a rough cathode
DOI: 10.1116/1.4968007
·
2017
Cited 18 times
2D/3D image charge for modeling field emission
DOI: 10.1063/1.4990562
·
2017
Cited 9 times
The image-charge correction for curved field emitters
DOI: 10.1557/mrs.2017.141
·
2017
Cited 46 times
Theoretical modeling of electron emission from graphene
DOI: 10.1119/1.4991367
·
2017
Cited 10 times
Simulations in quantum tunneling
DOI: 10.1002/9781119051794
·
2017
Cited 46 times
Introduction to the Physics of Electron Emission
DOI: 10.1063/1.5018602
·
2018
Cited 10 times
Analytical models of transmission probabilities for electron sources
DOI: 10.1021/acs.jpca.8b01772
·
2018
Cited 11 times
Instantaneous Tunneling Flight Time for Wavepacket Transmission through Asymmetric Barriers
DOI: 10.3390/app8071175
·
2018
Cited 23 times
Temperature Comparison of Looped and Vertical Carbon Nanotube Fibers during Field Emission
DOI: 10.1063/1.5066240
·
2018
Cited 4 times
Solution of the time dependent Schrödinger equation leading to Fowler-Nordheim field emission
DOI: 10.1063/1.5046663
·
2018
Cited 127 times
Recent advances in Wigner function approaches
DOI: 10.1038/s41598-018-37382-0
·
2019
Cited 7 times
A fast and adaptable method for high accuracy integration of the time-dependent Schrödinger equation
DOI: 10.1063/1.5086434
·
2019
Cited 5 times
Analytic Wigner distribution function for tunneling and trajectory models
DOI: 10.1063/5.0009759
·
2020
Cited 13 times
Analytic model of electron transport through and over non-linear barriers
DOI: 10.1063/1.3272690
·
2009
Cited 38 times
Space Charge Effects in Field Emission: One Dimensional Theory
DOI: 10.1063/1.5117289
·
2019
Cited 32 times
Comments on the continuing widespread and unnecessary use of a defective emission equation in field emission related literature
DOI: 10.1088/1361-6463/aac03b
·
2018
Cited 40 times
Thermal runaway of metal nano-tips during intense electron emission
DOI: 10.1116/6.0000753
·
2021
Cited 3 times
Temperature effects on gated silicon field emission array performance
DOI: 10.1103/physrevb.103.085410
·
2021
Cited 10 times
Few-cycle optical-field-induced photoemission from biased surfaces: An exact quantum theory
DOI: 10.1063/5.0044800
·
2021
Cited 3 times
Semi-analytic model of a carbon fiber thermal-field emitter
DOI: 10.1063/5.0042355
·
2021
Cited 46 times
Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects
DOI: 10.1103/physrevb.103.155427
·
2021
Wigner wave packets: Transmission, reflection, and tunneling
DOI: 10.1016/j.physleta.2021.127725
·
2021
Propagator calculations for time dependent Dirac delta potentials and corresponding two state models
DOI: 10.1063/5.0065612
·
2021
A new multiscale approach to rapidly determine the local emission current density of nanoscale metallic field emitters
DOI: 10.1103/physreva.104.062203
·
2021
Reevaluating the Hartman effect for field emission
DOI: 10.1116/6.0001656
·
2022
Thermal-field emission from cones and wires
DOI: 10.1016/s0370-1573(01)00092-8
·
2002
Cited 84 times
Time delay
Related Papers: