DOI: 10.1063/1.462066
OpenAccess: Closed
This work is not Open Acccess. We may still have a PDF on file in the green box below.
Share this:
Remember all your deadlines for grant applications and conference abstracts!
Add your email to join our free beta test:
Thank you!

Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction

Axel D. Becke

Density functional theory
Thermodynamics
Charge exchange
Previous work by the author on diatomic molecules and by others on polyatomic systems has revealed that Kohn–Sham density‐functional theory with ‘‘gradient corrected’’ exchange‐correlation approximations gives remarkably good molecular bond and atomization energies. In the present communication, we report the results of an extensive survey of density‐functional atomization energies on the 55 molecules of the Gaussian‐1 thermochemical data base of Pople and co‐workers [J. Chem. Phys. 90, 5622 (1989); 93, 2537 (1990)]. These calculations have been performed by the fully numerical molecules (NUMOL) program of Becke and Dickson [J. Chem. Phys. 92, 3610 (1990)] and are therefore free of basis‐set uncertainties. We find an average absolute error in the total atomization energies of our 55 test molecules of 3.7 kcal/mol, compared to 1.6 kcal/mol for the Gaussian‐1 procedure and 1.2 kcal/mol for Gaussian‐2.


Referenced Papers:
DOI: 10.1063/1.455005
·
1988
Cited 134 times
Numerical solution of Poisson’s equation in polyatomic molecules
DOI: 10.1103/physreva.33.2786
·
1986
Cited 116 times
Completely numerical calculations on diatomic molecules in the local-density approximation
DOI: 10.1103/physreva.43.4637
·
1991
Cited 235 times
Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole
DOI: 10.1063/1.454033
·
1988
Cited 2,118 times
A multicenter numerical integration scheme for polyatomic molecules
DOI: 10.1103/physrevlett.59.1285
·
1987
Cited 108 times
Energies of atoms with nonspherical charge densities calculated with nonlocal density-functional theory
DOI: 10.1063/1.458892
·
1990
Cited 618 times
Gaussian‐1 theory of molecular energies for second‐row compounds
DOI: 10.1063/1.457869
·
1990
Cited 140 times
Numerical solution of Schrödinger’s equation in polyatomic molecules
DOI: 10.1063/1.456415
·
1989
Cited 1,270 times
Gaussian‐1 theory: A general procedure for prediction of molecular energies
DOI: 10.1088/0305-4608/4/8/013
·
1974
Cited 387 times
The surface energy of a bounded electron gas
DOI: 10.1063/1.460205
·
1991
Cited 3,179 times
Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds
DOI: 10.1016/s0277-5387(00)81788-x
·
1988
Cited 66 times
A theoretical study of metal—ligand bond strengths (ML: L = OH, OCH3, SH, NH2, PH2, CH3, SiH3, CN and H) in the early transition metal systems Cl3ML (M = Ti, Zr and Hf) and late transition metal systems LCo(CO)4
DOI: 10.1103/physrevb.37.785
·
1988
Cited 75,585 times
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
DOI: 10.1103/physrevlett.45.566
·
1980
Cited 10,907 times
Ground State of the Electron Gas by a Stochastic Method
DOI: 10.1103/physrevb.33.8822
·
1986
Cited 15,173 times
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
DOI: 10.1103/physrev.136.b864
·
1964
Cited 35,245 times
Inhomogeneous Electron Gas
DOI: 10.1139/p80-159
·
1980
Cited 17,145 times
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis
DOI: 10.1063/1.450025
·
1986
Cited 1,503 times
Density functional calculations of molecular bond energies
DOI: 10.1063/1.460444
·
1991
Cited 201 times
The influence of self‐consistency on nonlocal density functional calculations
DOI: 10.1063/1.454274
·
1988
Cited 765 times
Correlation energy of an inhomogeneous electron gas: A coordinate‐space model
DOI: 10.1063/1.451353
·
1986
Cited 257 times
On the large‐gradient behavior of the density functional exchange energy
DOI: 10.1103/physrevb.41.12930
·
1990
Cited 132 times
Nonlocal Wigner-like correlation-energy density functional through coordinate scaling
DOI: 10.1103/physreva.38.3098
·
1988
Cited 40,963 times
Density-functional exchange-energy approximation with correct asymptotic behavior
DOI: 10.1007/bf00551408
·
1980
Cited 236 times
Correlation energies in the spin-density functional formalism
DOI: 10.1021/bk-1989-0394.ch012
·
1989
Cited 32 times
Density Functional Theories in Quantum Chemistry
Related Papers:
DOI: 10.1016/s1380-7323(03)80011-0
·
2003
Cited 6 times
Computational approaches to heats of formation
DOI: 10.1080/0026897021000021804
·
2002
Cited 13 times
Electron affinities, molecular structures, and thermochemistry of the fluorine, chlorine and bromine substituted methyl radicals
DOI: 10.5339/qfarf.2012.eep55
·
2012
Benchmark study of density functional methods for organometallic reactions
DOI: 10.1080/0026897031000112497
·
2003
Cited 3 times
Density functional theory study of homologous organometallic molecules of the [RhXL2]2 (X = Cl, Br, or I; L = CO, PH3, or PF3) type
DOI: 10.1002/cphc.201000788
·
2011
Cited 8 times
Validation of DFT-Based Methods for Predicting Qualitative Thermochemistry of Large Polyaromatics
DOI: 10.1021/jp072093d
·
2007
Cited 23 times
Aqueous Microsolvation of Mercury Halide Species†
DOI: 10.1021/jp962344a
·
1997
Cited 32 times
Systematic Study of the Potential Energy Surface for the Base-Induced Elimination Reaction of Fluoride Ion with Ethyl Fluoride Using Density Functional Theory
DOI: 10.1002/poc.3751
·
2018
Structures and thermochemistry of methyl ethyl sulfide and its hydroperoxides: HOOCH2 SCH2 CH3 , CH3 SCH(OOH)CH3 , CH3 SCH2 CH2 OOH, and radicals
DOI: 10.1002/chin.199935042
·
2010
ChemInform Abstract: 1,3-Dipolar Cycloadditions of Thionitroso Compounds (R-N=S): A Density Functional Theory Study.
DOI: 10.1002/poc.4300
·
2021
Rh(II)‐mediated one‐pot synthesis of dihydrobenzofuran and spiro[2.5]oct‐1‐ene: Experimental and DFT studies