Search, read and download over 200 million research papers for free
DOI: 10.1021/acs.jpcb.2c04199
OpenAccess: Hybrid
This work has “Hybrid” OA status. This means it is free under an open license in a toll-access journal.
Share this:

Response of Elementary Structural Transitions in Glassy Atactic Polystyrene to Temperature and Deformation

Georgios G. Vogiatzis,Lambèrt C.A. van Breemen,Markus Hütter

Energy landscape
Saddle point
Maxima and minima
Full Text PDF Links found:
    Cite this:
Vogiatzis, G. G., Breemen, L. C. A. van, & Hütter, M. (2022). Response of Elementary Structural Transitions in Glassy Atactic Polystyrene to Temperature and Deformation. Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.2c04199
Powered by Citationsy*
The effects of temperature, pressure, and imposed strain on the structural transition pathways of glassy atactic polystyrene (aPS) are studied for a wide range of conditions. By employing an atomistic description of the system, we systematically explore its free energy landscape, emphasizing connections between local free energy minima. A triplet of two minima connected to each other via a first-order saddle point provides the full description of each elementary structural relaxation event. The basis of the analysis is the potential energy landscape (PEL), where efficient methods for finding saddle points and exploring transition pathways have been developed. We then translate the stationary points of the PEL to stationary points of the proper free energy landscape that obeys the macroscopically imposed constraints (either stress- or strain-controlled). By changing the temperature under isobaric conditions (i.e., Gibbs energy landscape), we probe the temperature dependence of the transition rates of the subglass relaxations of aPS, thus obtaining their activation energies by fitting to the Arrhenius equation. The imposition of different strain levels under isothermic conditions allows us to estimate the apparent activation volume of every elementary transition. Our findings are in good agreement with experimental observations for the same system, indicating that both length- and time-scales of the structural transitions of glassy aPS can be obtained by proper free energy minimization of atomistically detailed configurations.